GNU SASL

Simple Authentication and Security Layer for the GNU system
for version 1.2, 11 June 2009

Simon Josefsson

This manual was last updated 11 June 2009 for version 1.2 of GNU SASL.
Copyright (©) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Simon Josefsson.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Table of Contents

1 Introduction..................., 1
1.1 SASL OVErvIeW ..ottt e 1
1.2 Implementationo 1
1.3 Featureso 2
1.4 Requirements 3
1.5 Supported Platforms.......... ... 3
1.6 Getting helpo 5)
1.7 Commercial Supporto 5
1.8 Downloading and Installing.................... .. i ..)

1.8.1 Installing under Windows, 6
1.9 Bug Reports. 7
1.10 Contributingcooo 7

2 Preparation 9
2.1 Header.ot 9
2.2 Initialization......... 9
2.3 Version Check........ .. i 11
2.4 Building the sourceo 11
2.5 Autoconf tests 12

2.5.1 Autoconf test via ‘pkg-config’............ ...l 12
2.5.2 Standalone Autoconf test using Libtool................... 12

3 Using the Library 14
3.1 Choosing a mechanism 18
3.2 Usingacallbacko i 19

4 Properties........... 21

5 Mechanisms.................................... 23
5.1 The EXTERNAL mechanism..................oooiiiiin.. 23
5.2 The ANONYMOUS mechanismcooiiiiiiaan... 23
5.3 The PLAIN mechanismooiiiiiiiiiin... 24
5.4 The LOGIN mechanism ..., 24
5.5 The CRAM-MDS5 mechanism.............cooiiiiiiiiiiaao... 24
5.6 The DIGEST-MD5 mechanismooiiiiiieann... 25
5.7 The NTLM mechanism...........coouuiiiiiiiiiiiinnnnne... 25
5.8 The SECURID mechanismoooiiiiiiiiiiiean.. 26
5.9 The GSSAPI mechaniSmc.coiiiiiiiiieiieieann.. 26
5.10 The KERBEROS_V5 mechanism....................cooo.... 26

6 Global Functions 28

7 Callback Functions 30
8 Property Functions............................ 32
9 Session Functions.............................. 34
10 Utilities L. 37
11 Memory Handling............................ 40
12 Error Handling............................... 41
12.1 Error values ... 41
12.2 Error Strings. 45
13 Examples.........., 46
13.1 Example 1. ..o 46
13.2 Example 2. ..o 48
13.3 Example 3. ..o 51
134 Example 4. ... 54
14 Acknowledgements........................... 58
15 Invoking gsasl................................ 59
Appendix A Protocol Clarifications 62
A.1 Use of SASLprep in CRAM-MD5, 62
A.2 Use of SASLprep in LOGIN ... i 62
Appendix B Old Functions..................... 63
B.1 Obsolete callback function prototypes......................... 83
Appendix C Copying Information.......... ... 90
C.1 GNU Free Documentation License 90
C.2 GNU Lesser General Public License........................... 97
C.3 GNU General Public Licenseccoiiii.... 105
Function and Data Index........................ 117

Concept Index............. 119

ii

Chapter 1: Introduction 1

1 Introduction

This manual can be used in several ways. If read from the beginning to the end, it gives
the reader an understanding of the SASL framework and the GNU SASL implementation,
and how the GNU SASL library is used in an application. Forward references are included
where necessary. Later on, the manual can be used as a reference manual to get just the
information needed about any particular interface of the library. Experienced programmers
might want to start looking at the examples at the end of the manual, and then only read
up those parts of the interface which are unclear.

1.1 SASL Overview

SASL is a framework for application protocols, such as SMTP or IMAP, to add authentication
support. For example, SASL is used to prove to the server who you are when you access
an IMAP server to read your e-mail.

The SASL framework does not specify the technology used to perform the authentication,
that is the responsibility for each SASL mechanism. Popular SASL mechanisms include
CRAM-MD5 and GSSAPI (for Kerberos V5).

Typically a SASL negotiation works as follows. First the client requests authentication
(possibly implicitly by connecting to the server). The server responds with a list of sup-
ported mechanisms. The client chose one of the mechanisms. The client and server then
exchange data, one round-trip at a time, until authentication either succeeds or fails. After
that, the client and server knows more about who is on the other end of the channel.

For example, in SMTP communication happens like this:
250-mail.example.com Hello pc.example.org [192.168.1.42], pleased to meet you
250-AUTH DIGEST-MD5 CRAM-MD5 LOGIN PLAIN
250 HELP
AUTH CRAM-MD5
334 PDk5MDgwNDEZMDUwNTUyMTE1NDQ5LjBAbGY j YWxob3NOPg==
amFzIDBkZDRkODZKMDV jNj I40DRkYzc30TcwODE4AZGIEMGY3
235 2.0.0 OK Authenticated
Here the first three lines are sent by the server and contains the list of supported mech-
anisms (DIGEST-MD5, CRAM-MD5, etc). The next line is sent by the client to select the
CRAM-MD5 mechanism. The server replies with a challenge. The client replies with a
response. The server accepts the authentication, and knows it is talking to a authenticated

user, and the application protocol can continue.

1.2 Implementation

GNU SASL is an implementation of the Simple Authentication and Security Layer frame-
work and a few common SASL mechanisms.

GNU SASL consists of a library (1ibgsasl), a command line utility (gsasl) to access
the library from the shell, and a manual. The library includes support for the framework
(with authentication functions and application data privacy and integrity functions) and at
least partial support for the CRAM-MD5, EXTERNAL, GSSAPI, ANONYMOUS, PLAIN,
SECURID, DIGEST-MD5, LOGIN, and NTLM mechanisms.

The library is easily ported because it does not do network communication by itself,
but rather leaves it up to the calling application. The library is flexible with regards to

Chapter 1: Introduction 2

the authorization infrastructure used, as it utilize a callback into the application to decide
whether a user is authorized or not.

GNU SASL is developed for the GNU/Linux system, but runs on over 20 platforms
including most major Unix platforms and Windows, and many kind of devices including
iPAQ handhelds and S/390 mainframes.

GNU SASL is written in pure ANSI C89 to be portable to embedded and otherwise
limited platforms. The entire library, with full support for ANONYMOUS, EXTERNAL,
PLAIN, LOGIN and CRAM-MD5, and the front-end that support client and server mode,
and the IMAP and SMTP protocols, fits in under 60kb on an Intel x86 platform, without
any modifications to the code. (This figure was accurate as of version 0.0.13.)

The design of the library and the intended interaction between applications and the
library through the official API is illustrated below.

_ == ——
- \1 < - - - - »{ ANONYMOUS
GNU SASL
| Funcion Library AP| € - - - - > EXTERNAL
Calls
gsasl_init () €--==3 PLAIN

gsasl_callback_set ()

|
Application | € ---- > CRAM-MD5
| gsasl_client_start ()
| gsasl_step () € - - - - > DIGEST-MD5
I Callback gsasl_finish () € - - - - »(GssAPI
sasl_done (
N / -)

Illustration 1.1: Logical overview showing how applications use authentication mecha-
nisms through an abstract interface.

1.3 Features
GNU SASL might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License version 3.0 or later. The library uses the GNU Lesser
General Public License version 2.1 or later.

It’s thread-safe
No global variables are used and multiple library handles and session handles
may be used in parallel.

It’s internationalized
It handles non-ASCII username and passwords and user visible strings used in
the library (error messages) can be translated into the users’ language.

It’s portable
It should work on all Unix like operating systems, including Windows. The
library itself should be portable to any C89 system, not even POSIX is required.

Chapter 1: Introduction 3

It’s small The library has been rewritten with embedded platforms in mind. For example,
no API consumes more than around 250 bytes of stack space.

Note that the library do not implement any policy to decide whether a certain user is
“authenticated” or “authorized” or not. Rather, it uses a callback into the application to
answer these questions.

1.4 Requirements

The GNU SASL library does not have any required external dependencies, but some optional
features are enabled if you have a specific external library.

LibNTLM The NTLM mechanism requires the library LibNTLM, http://josefsson.org/libntlm/.

GSS-API The GSS-API mechanism requires a GSS-API library, such as GNU GSS
(http://www.gnu.org/software/gss/), MIT Kerberos or Heimdal.

LibIDN Processing of non-ASCII username and passwords requires the SASLprep im-
plementation in LibIDN (http://www.gnu.org/software/libidn/). This is
needed for full conformance with the latest SASL protocol drafts, but is op-
tional in the library for improved portability.

Libgerypt The GNU SASL library ships with its own cryptographic implementation, but it
can use the one in libgerypt (http://www.gnupg.org/) instead, if it is available.
This is typically useful for desktop machines which have libgcrypt installed.

The command-line interface to GNU SASL requires a POSIX or Windows
platform for network connectivity. The command-line tool can make use of GnuTLS
(http://www.gnutls.org/) to support the STARTTLS modes of IMAP and SMTP, but
GnuTLS is not required.

Note that the library does not need a POSIX platform or network connectivity.

1.5 Supported Platforms

GNU SASL has at some point in time been tested on the following platforms. Daily online
build reports are available at http://autobuild. josefsson.org/gsasl/.

1. Debian GNU/Linux 3.0 (Woody)

GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,
hppa-unknown-linux-gnu, hppa64-unknown-linux-gnu, i686-pc-linux-gnu,
ia64-unknown-linux-gnu, m68k-unknown-linux-gnu, mips—unknown-linux-gnu,
mipsel-unknown-linux—-gnu, powerpc-unknown-linux-gnu, s390-ibm-linux-gnu,
sparc-unknown-linux-gnu.

2. Debian GNU/Linux 2.1
GCC 2.95.1 and GNU Make. armv4l-unknown-linux-gnu.

3. Tru64 UNIX

Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec—
osfb.1.

http://josefsson.org/libntlm/
http://www.gnu.org/software/gss/
http://www.gnu.org/software/libidn/
http://www.gnupg.org/
http://www.gnutls.org/
http://autobuild.josefsson.org/gsasl/

Chapter 1: Introduction 4

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

SuSE Linux 7.1

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

SuSE Linux 7.2a

GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

RedHat Linux 7.2

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

RedHat Linux 8.0

GCC 3.2 and GNU Make. i686-pc-1linux-gnu.

RedHat Advanced Server 2.1

GCC 2.96 and GNU Make. 1686-pc-1linux-gnu.

Slackware Linux 8.0.01

GCC 2.95.3 and GNU Make. 1i686-pc-linux-gnu.

Mandrake Linux 9.0

GCC 3.2 and GNU Make. i686-pc-linux-gnu.

IRIX 6.5

MIPS C compiler, IRIX Make. mips-sgi-irix6.5.

AIX 4.3.2

IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.

Microsoft Windows 2000 (Cygwin)

GCC 3.2, GNU make. i686-pc-cygwin.

HP-UX 11

HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.
SUN Solaris 2.8

Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

SUN Solaris 2.9

Sun Forte Developer 7 C compiler and GNU Make. sparc-sun-solaris2.9.
NetBSD 1.6

GCC 2953 and GNU Make. alpha-unknown-netbsdl.6, i386-unknown-
netbsdelfl.6.

OpenBSD 3.1 and 3.2

GCC 2953 and GNU Make. alpha-unknown-openbsd3.1, i386-unknown-
openbsd3. 1.

FreeBSD 4.7

GCC 2954 and GNU Make. alpha-unknown-freebsd4.7, 1i386-unknown-
freebsd4.7.

Cross compiled to uClinux/uClibc on Motorola Coldfire.
GCC 3.4 and GNU Make m68k-uclinux-elf.

If you port GNU SASL to a new platform, please report it to the author so this list can

be updated.

Chapter 1: Introduction 5)

1.6 Getting help

A mailing list where users may help each other exists, and you can reach it by
sending e-mail to help-gsasl@gnu.org. Archives of the mailing list discussions, and
an interface to manage subscriptions, is available through the World Wide Web at
http://lists.gnu.org/mailman/listinfo/help-gsasl.

1.7 Commercial Support
Commercial support is available for users of GNU SASL. The kind of support that can be
purchased may include:

e Implement new features. Such as a new SASL mechanism.

e Port GNU SASL to new platforms. This could include porting to an embedded plat-
forms that may need memory or size optimization.

e Integrating SASL as a security environment in your existing project.

e System design of components related to SASL.

If you are interested, please write to:

Simon Josefsson Datakonsult
Hagagatan 24

113 47 Stockholm

Sweden

E-mail: simon@josefsson.org

If your company provide support related to GNU SASL and would like to be mentioned
here, contact the author (see Section 1.9 [Bug Reports], page 7).

1.8 Downloading and Installing

The package can be downloaded from several places, including;:
ftp://ftp.gnu.org/pub/gnu/gsasl/

The latest version is stored in a file, e.g., ‘gsasl-1.2.tar.gz’ where the ‘1.2’ value is
the highest version number in the directory.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive.

Here is an example terminal session that download, configure, build and install the
package. You will need a few basic tools, such as ‘sh’, ‘make’ and ‘cc’.

$ wget -q ftp://ftp.gnu.org/pub/gnu/gsasl/gsasl-1.2.tar.gz
$ tar xfz gsasl-1.2.tar.gz

$ cd gsasl-1.2/

$./configure

$ make

$ make install

mailto:help-gsasl@gnu.org
http://lists.gnu.org/mailman/listinfo/help-gsasl
ftp://ftp.gnu.org/pub/gnu/gsasl/

Chapter 1: Introduction 6

After that gsasl should be properly installed and ready for use.

A few configure options may be relevant, summarized in the table.

-—disable-client

--disable-server
If your target system require a minimal implementation, you may wish to disable
the client or the server part of the code. This do not remove symbols from the
library, so if you attempt to call an application that uses server functions in a
library built with ——-disable-server, the function will return an error code.

--disable-obsolete
This remove backwards compatibility (see Appendix B [Old Functions],
page 63). Use if you want to limit the size of the library.

--disable-anonymous
--disable-external
--disable-plain
--disable-login
-—-disable-securid
--disable-ntlm
--disable-cram-md5
--disable-digest-mdb
--disable-gssapi
-—enable-kerberos_vb
Disable or enable individual mechanisms (see Chapter 5 [Mechanisms], page 23).

--without-stringprep
Disable internationalized string processing. Note that this will result in a SASL
library that is only compatible with RFC 2222.

For the complete list, refer to the output from configure —-help.

1.8.1 Installing under Windows

There are two ways to build GNU SASL on Windows: via MinGW or via Microsoft Visual
Studio.

With MinGW, you can build a GNU SASL DLL and use it from other applications.
After installing MinGW (http://mingw.org/) follow the generic installation instructions
(see Section 1.8 [Downloading and Installing], page 5). The DLL is installed by default.

For information on how to wuse the DLL in other applications, see:
http://www.mingw.org/mingwfaq.shtml#fag-msvcdll.

You can build GNU SASL as a native Visual Studio C++ project. This allows you to
build the code for other platforms that VS supports, such as Windows Mobile. You need
Visual Studio 2005 or later.

First download and unpack the archive as described in the generic installation instruc-
tions (see Section 1.8 [Downloading and Installing], page 5). Don’t run ./configure.
Instead, start Visual Studio and open the project file ‘1ib/win32/1libgsasl.sln’ inside
the GNU SASL directory. You should be able to build the project using Build Project.

http://mingw.org/
http://www.mingw.org/mingwfaq.shtml#faq-msvcdll

Chapter 1: Introduction 7

Output libraries will be written into the 1ib/win32/1ib (or 1ib/win32/1ib/debug for
Debug versions) folder.

Warning! Unless you build GNU SASL linked with libgcrypt, GNU SASL uses the Win-
dows function CryptGenRandom for generating cryptographic random data. The function
is known to have some security weaknesses. See http://eprint.iacr.org/2007/419 for
more information. The code will attempt to use the Intel RND crypto provider if it is
installed, see ‘1ib/gl/gc-gnulib.c’.

1.9 Bug Reports

If you think you have found a bug in GNU SASL, please investigate it and report it.
e Please make sure that the bug is really in GNU SASL, and preferably also check that
it hasn’t already been fixed in the latest version.
e You have to send us a test case that makes it possible for us to reproduce the bug.
e You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-gsasl@gnu.org’

1.10 Contributing

If you want to submit a patch for inclusion — from solve a typo you discovered, up to adding
support for a new feature — you should submit it as a bug report (see Section 1.9 [Bug
Reports|, page 7). There are some things that you can do to increase the chances for it to
be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the
copyright of your work to the Free Software Foundation. This is to protect the freedom
of the project. If you have not already signed papers, we will send you the necessary
information when you submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines
are common sense. Use it.

For code contributions, a number of style guides will help you:

e Coding Style. Follow the GNU Standards document (see (undefined) [top], page (un-
defined)).
If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code (see (undefined) [top], page (undefined))
before submitting your work.

http://eprint.iacr.org/2007/419

Chapter 1: Introduction 8

e Use the unified diff format ‘diff -u’.

e Return errors. No reason whatsoever should abort the execution of the library. Even
memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

e Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

e Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

e Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

e Supply a ChangeLog and NEWS entries, where appropriate.

Chapter 2: Preparation 9

2 Preparation

To use GNU SASL, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of this
chapter, it is described how the library is initialized, and how the requirements of the library
are verified.

A faster way to find out how to adapt your application for use with GNU SASL may be
to look at the examples at the end of this manual (see Chapter 13 [Examples], page 46).

2.1 Header

All interfaces (data types and functions) of the library are defined in the header file ‘gsasl.h’.
You must include this in all programs using the library, either directly or through some other
header file, like this:

#include <gsasl.h>

The name space is gsasl_x for function names, Gsasl* for data types and GSASL_x*
for other symbols. In addition the same name prefixes with one prepended underscore are
reserved for internal use and should never be used by an application.

2.2 Initialization

The library must be initialized before it can be used. The library is initialized by calling
gsasl_init (see Chapter 6 [Global Functions|, page 28). The resources allocated by the
initialization process can be released if the application no longer has a need to call ‘Libgsasl’
functions, this is done by calling gsasl_done. For example:

int
main (int argc, char *argv[])
{

Gsasl *ctx = NULL;

int rc;

rc = gsasl_init (&ctx);
if (rc '= GSASL_OK)
{
printf ("SASL initialization failure (%d): %s\n",
rc, gsasl_strerror (rc));
return 1;

}

In order to make error messages from gsasl_strerror be translated (see Section “Top”
in GNU Gettext) the application must set the current locale using setlocale before calling
gsasl_init. For example:

int
main (int argc, char *argv[])
{

Gsasl *ctx = NULL;

Chapter 2: Preparation 10

int rc;
setlocale (LC_ALL, "");

rc = gsasl_init (&ctx);
if (rc !'= GSASL_OK)
{
printf (gettext ("SASL initialization failure (%d): %s\n"),
rc, gsasl_strerror (rc));
return 1;

}

In order to take advantage of the secure memory features in Libgerypt!, you need to
initialize secure memory in your application, and for some platforms even make your appli-
cation setuid root. See the Libgcerypt documentation for more information. Example code
to initialize secure memory in your code:

#include <gcrypt.h>

int
main (int argc, char xargv[])
{

Gsasl *ctx = NULL;

int rc;

/* Check version of libgcrypt. */
if (!gcry_check_version (GCRYPT_VERSION))
die ("version mismatch\n");

/* Allocate a pool of 16k secure memory. This also drops priviliges
on some systems. */
gcry_control (GCRYCTL_INIT_SECMEM, 16384, 0);

/* Tell Libgcrypt that initialization has completed. */
gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0);

rc = gsasl_init (&ctx);
if (rc != GSASL_OK)
{
printf ("SASL initialization failure (%d): %s\n",
rc, gsasl_strerror (rc));
return 1;

3

! Note that GNU SASL normally use its own internal implementation of the cryptographic functions. Take
care to verify that GNU SASL really use Libgcrypt, if this is what you want.

Chapter 2: Preparation 11

If you do not do this, keying material will not be allocated in secure memory (which
for most application is not the biggest secure problem anyway). Note that the GNU SASL
Library has not been audited to make sure it only ever stores passwords or keys in secure
memory.

2.3 Version Check

It is often desirable to check that the version of the library used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup.

gsasl_check_version

const char * gsasl_check_version (const char * req_version) [Function]
req_version: version string to compare with, or NULL.

Check GNU SASL Library version.
See GSASL_VERSION for a suitable req_version string.

Return value: Check that the version of the library is at minimum the one given as
a string in req_version and return the actual version string of the library; return
NULL if the condition is not met. If NULL is passed to this function no check is done
and only the version string is returned.

The normal way to use the function is to put something similar to the following early in
your main:

if (!gsasl_check_version (GSASL_VERSION))
{
printf ("gsasl_check_version failed:\n"
"Header file incompatible with shared library.\n");
exit(1);
}

2.4 Building the source

If you want to compile a source file including the ‘gsasl.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, the library uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
libgsasl. The following example shows how it can be used at the command line:

gcc -c foo.c ‘pkg-config libgsasl --cflags®

Adding the output of ‘pkg-config libgsasl --cflags’ to the compilers command line
will ensure that the compiler can find the ‘gsasl.h’ header file.

Chapter 2: Preparation 12

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘~L’ option). For this, the option ‘--1ibs’ to pkg-config
libgsasl can be used. For convenience, this option also outputs all other options that
are required to link the program with the libarary (for instance, the ‘~1idn’ option). The
example shows how to link ‘foo.o’” with the library to a program foo.

gcc —o foo foo.o ‘pkg-config libgsasl --libs®
Of course you can also combine both examples to a single command by specifying both
options to pkg-config:
gcc —o foo foo.c ‘pkg-config libgsasl --cflags --libs®

2.5 Autoconf tests

If you work on a project that uses Autoconf (see (undefined) [top], page (undefined)) to help
find installed libraries, the suggestions in the previous section are not the entire story. There
are a few methods to detect and incorporate the GNU SASL Library into your Autoconf
based package. The preferred approach, is to use Libtool in your project, and use the
normal Autoconf header file and library tests.

2.5.1 Autoconf test via ‘pkg-config’

If your audience is a typical GNU/Linux desktop, you can often assume they have the
‘pkg-config’ tool installed, in which you can use its Autoconf M4 macro to find and set
up your package for use with Libgsasl. The following illustrate this scenario.

AC_ARG_ENABLE (gsasl,
AC_HELP_STRING([--disable-gsasl], [don’t use GNU SASL]),
gsasl=$enableval)
if test "$gsal" != "no" ; then
PKG_CHECK_MODULES(GSASL, libgsasl >= 1.2,
[gsasl=yes],
[gsasl=no])

if test "$gsasl" != "yes" ; then
gsasl=no
AC_MSG_WARN([Cannot find GNU SASL, disabling])
else
gsasl=yes
AC_DEFINE(USE_GSASL, 1, [Define to 1 if you want GNU SASL.])
fi
fi

AC_MSG_CHECKING([if GNU SASL should be used])
AC_MSG_RESULT ($gsasl)

2.5.2 Standalone Autoconf test using Libtool

If your package uses Libtool(see (undefined) [top], page (undefined)), you can use the normal
Autoconf tests to find Libgsasl and rely on the Libtool dependency tracking to include the
proper dependency libraries (e.g., Libidn). The following illustrate this scenario.

AC_CHECK_HEADER(gsasl.h,

Chapter 2: Preparation

AC_CHECK_LIB(gsasl, gsasl_check_version,
[gsasl=yes AC_SUBST(GSASL_LIBS, -lgsasl)],
gsasl=no),
gsasl=no)
AC_ARG_ENABLE (gsasl,
AC_HELP_STRING([--disable-gsasl], [don’t use GNU SASL]),
gsasl=$enableval)

if test "$gsasl" != "no" ; then

AC_DEFINE(USE_SASL, 1, [Define to 1 if you want GNU SASL.])
else

AC_MSG_WARN([Cannot find GNU SASL, diabling])
fi

AC_MSG_CHECKING([if GNU SASL should be used])
AC_MSG_RESULT ($gsasl)

13

Chapter 3: Using the Library 14

3 Using the Library

Your application’s use of the library can be roughly modeled into the following steps: ini-
tialize the library, optionally specify the callback, perform the authentication, and finally
clean up. The following image illustrate this.

Control flow inside application ﬁ

Specify callback: Multiplex
gsas| calback_set (ctx, myfunc); > severalclients...
. -OR-
Azcept incoming
Server sessions...

/

Initialize library:
gsas|init(&ct);

- Clanup
- gsas|_done (ch);

A 4

fork(),
pthread_creates(),

The third step may look the most complex, but for a simple client it will actually not
involve any code. If your application need to handle several concurrent clients, or if it is a
server that need to serve many clients simultaneous, things do get a bit more complicated.

For illustration, we will write a simple client. Writing a server would be similar, the only
difference is that, later on, instead of supplying username or passwords, you need to decide
whether someone should be allowed to log in or not. The code for what we have discussed
so far make up our main function in our client (see Section 13.1 [Example 1], page 46):

int main (int argc, char *argv[])
{

Gsasl *ctx = NULL;

int rc;

if ((rc = gsasl_init (&ctx)) != GSASL_0K)
{
printf ("Cannot initialize libgsasl (%d): %s",
rc, gsasl_strerror (rc));
return 1;

}
client (ctx);
gsasl_done (ctx);

return O;
}
Here, the call to the function client correspond to the third step in the image above.
For a more complicated application, that have several clients running simultaneous,
instead of simply calling client, it may have created new threads for each session, and call
client within each thread. The library is thread safe.

Chapter 3: Using the Library 15

An actual authentication session is more complicated than what we have seen so far.
The steps that make up it are: decide which mechanism to use, start the session, optionally
specify the callback, optionally set any properties, perform the authentication loop, and
clean up. Naturally, your application will start to talk its own protocol (e.g., SMTP or
IMAP) after these steps have concluded.

The authentication loop is based on sending tokens (typically short messages encoded
in base 64) back and forth between the client and server. It continue until authentication
succeeds or there is an error. The format of the data to transfer, the number of iterations
in the loop, and other details are specified by each mechanism. The goal of the library is
to isolate your application from the details of all different mechanisms.

Note that the library do not send data to the server itself, but return it in an buffer.
You must send it to the server yourself, according to an application protocol profile. For
example, the SASL application protocol profile for SMTP is described in RFC 2554.

The following image illustrate the steps we have been talking about.

Control flow
for one SASL session

fork(),
pthread_create(),

Decide which mechanism to use:
mech =my_chose_mechanism();

N

Start new authentication process:
gsasl_clent_start {ctx, mech, &session);
OH
gsasl_server_start (ctx, mech, &session);

pd

Optionally set prope rties:
gsas|_property_set (session, GSASL_AUTHZID, "jo=');

Read token from peer:
readtoken (&in);

Cne step of the authentication:
rc = gsasl|_stepsd (session, in, &out);

~a

Send token to peer:
o ==GSASL_NEEDS MORE sendtoken {out):

MNeed
another
token?

rc = GSASL_OK

Authentication
finished?

re l=GSASL_NEEDS _MORE

Abort e == GSASL_OK
sas| finish (session);
. . g - () . Finizh authentication process:
printf (*Failure: %as'n", gsas|_strerror (rc)); o i
gsasl_finish (session),

1
— P

i

Authenticated protocol exchanges...
Forexampke SMTF or IMAF.

We will now show the implementation of the client function used before.

void client (Gsasl *ctx)

{

Gsasl_session *session;

Chapter 3: Using the Library 16

}

const char *mech = "PLAIN";
int rc;

/* Create new authentication session. */
if ((rc = gsasl_client_start (ctx, mech, &session)) !'= GSASL_0K)
{
printf ("Cannot initialize client (%d): %s\n",
rc, gsasl_strerror (rc));
return;

}

/* Set username and password in session handle. This info will be
lost when this session is deallocated below. */

gsasl_property_set (session, GSASL_AUTHID, "jas");

gsasl_property_set (session, GSASL_PASSWORD, "secret");

/* Do it. */
client_authenticate (session);

/* Cleanup. */
gsasl_finish (session);

This function is responsible for deciding which mechanism to use. In this case, the
‘PLAIN’ mechanism is hard coded, but you will see later how this can be made more flexible.
The function create a new session, store the username and password in the session handle,
then call another function client_authenticate to handle the authentication loop, and
end by cleaning up. Let’s continue with the implementation of client_authenticate.

void client_authenticate (Gsasl_session * session)

{

char buf [BUFSIZ] = "";
char *p;
int rc;

/* This loop mimic a protocol where the server get to send data
first. */

do
printf ("Input base64 encoded data from server:\n");
fgets (buf, sizeof (buf) - 1, stdin);
if (buf[strlen (buf) - 1] == ’\n’)
buf [strlen (buf) - 1] = ’\0’;

rc = gsasl_step64 (session, buf, &p);

if (rc == GSASL_NEEDS_MORE || rc == GSASL_0K)

Chapter 3: Using the Library 17

{
printf ("Output:\n%s\n", p);
free (p);
}
}
while (rc == GSASL_NEEDS_MORE) ;

printf ("\n");

if (rc !'= GSASL_OK)
{
printf ("Authentication error (%d): %s\n",
rc, gsasl_strerror (rc));
return;

}

/* The client is done. Here you would typically check if the
server let the client in. If not, you could try again. */

printf ("If server accepted us, we’re done.\n");

}

This last function need to be discussed in some detail. First, you should be aware that
there are two versions of this function, that differ in a subtle way. The version above (see
Section 13.2 [Example 2], page 48) is used for application profiles where the server send
data first. For some mechanisms, this may waste a roundtrip, because the server need
input from the client to proceed. Therefor, today the recommended approach is to permit
client to send data first (see Section 13.1 [Example 1], page 46). Which version you should
use depend on which application protocol you are implementing.

Further, you should realize that it is bad programming style to use a fixed size buffer.
On GNU systems, you may use the getline functions instead of fgets. However, in
practice, there are few mechanisms that use very large tokens. In typical configurations,
the mechanism with the largest tokens (GSSAPI) can use at least 500 bytes. A fixed buffer
size of 8192 bytes may thus be sufficient for now. But don’t say I didn’t warn you, when a
future mechanism doesn’t work in your application, because of a fixed size buffer.

The gsasl_step64 (and of course also gasl_step) return two non-error return codes.
GSASL_OK is used for success, indicating that the library consider the authentication finished.
That may include a successful server authentication, depending on the mechanism. You
must not let the client continue to the application protocol part unless you receive GSASL_
0K from these functions. In particular, don’t be fooled into believing authentication were
successful if the server reply “OK” but these function has failed with an error. The server
may have been hacked, and could be tricking you into sending confidential data, without
having successfully authenticated the server.

The non-error return code GSASL_NEEDS_MORE is used to signal to your application that
you should send the output token to the peer, and wait for a new token, and do another
iteration. If the server conclude the authentication process, with no data, you should call
gsasl_step64 (or gsasl_step) specifying a zero-length token.

Chapter 3: Using the Library 18

If the functions (gsasl_step and gsasl_step64) return any non-error code, the content
of the output buffer is undefined. Otherwise, it is the callers responsibility to deallocate
the buffer, by calling free. Note that in some situations, where the buffer is empty, NULL
is returned as the buffer value. You should treat this as an empty buffer.

3.1 Choosing a mechanism

Our earlier code was hard coded to use a specific mechanism. This is rarely a good idea.
Instead, it is recommended to select the best mechanism available from the list of mecha-
nism supported by the server. Note that without TLS or similar, the list may have been
maliciously altered, by an attacker. This means that you should abort if you cannot find
any mechanism that exceeds your minimum security level. There is a function gsasl_
client_suggest_mechanism (see Chapter 6 [Global Functions], page 28) that will try to
pick the “best” available mechanism from a list of mechanisms. Our simple interactive
example client (see Section 13.3 [Example 3|, page 51) include the following function to
decide which mechanism to use. Note that the code doesn’t blindly use what is returned
from gsasl_client_suggest_mechanism, but rather let some logic (in this case the user,
through an interactive query) decide which mechanism is acceptable.

const char *client_mechanism (Gsasl *ctx)

{
static char mech[GSASL_MAX_MECHANISM_SIZE + 1] = "";
char mechlist[BUFSIZ] = "";
const char *suggestion;
printf ("Enter list of mechanism that server support, separate by SPC:\n");
fgets (mechlist, sizeof (mechlist) - 1, stdin);
suggestion = gsasl_client_suggest_mechanism (ctx, mechlist);
if (suggestion)
printf ("Library suggest use of ‘Ys’.\n", suggestion);
printf ("Enter mechanism to use:\n");
fgets (mech, sizeof (mech) - 1, stdin);
mech[strlen (mech) - 1] = ’\0’;
return mech;
}

When running this example code, it might look like in the following output.

Enter list of mechanism that server support, separate by SPC:
CRAM-MD5 DIGEST-MD5 GSSAPI FOO BAR

Library suggest use of ‘GSSAPI’.

Enter mechanism to use:

CRAM-MD5

Input base64 encoded data from server:

Zmb5vemQ=

Output:

amFzIDkyY2UINWESMTM2ZTY4NzEyMTUyZTF jYmFmNjVkZjgx

Chapter 3: Using the Library 19

If server accepted us, we’re done.

3.2 Using a callback

Our earlier code specified the username and password before the authentication loop, as in:

gsasl_property_set (ctx, GSASL_AUTHID, "jas");
gsasl_property_set (ctx, GSASL_PASSWORD, "secret");

This may work for simple mechanisms, that only ever need an username and a password.
But some mechanism require more information, such as an authorization identity, a special
PIN or passcode, a realm, a hostname, a service name, or an anonymous identifier. Querying
the user for all that information, without knowing exactly which of it is really needed will
result in a poor user interface. The user should not have to input private information, if it
isn’t required.

The approach is a bad idea for another reason. What if the server abort the authenti-
cation process? Then your application have already queried the user for a username and

password. It would be better if you only asked the user for this information, annoying to
input, when it is known to be needed.

A better approach to this problem is to use a callback. Then the mechanism may query
your application whenever it need some information, like the username and password. It
will only do this at the precise step in the authentication when the information is actually
needed. Further, if the user abort, e.g., a password prompt, the mechanism is directly
informed of this (because it invoked the callback), and could recover somehow.

Our final example (see Section 13.4 [Example 4], page 54) specify a callback function,
inside main as below.

/* Set the callback handler for the library. */
gsasl_callback_set (ctx, callback);

The function itself is implemented as follows.

int callback (Gsasl * ctx, Gsasl_session * sctx, Gsasl_property prop)

{
char buf [BUFSIZ] = "";
int rc = GSASL_NO_CALLBACK;

/* Get user info from user. */
printf ("Callback invoked, for property %d.\n", prop);

switch (prop)
{
case GSASL_PASSCODE:
printf ("Enter passcode:\n");
fgets (buf, sizeof (buf) - 1, stdin);
buf [strlen (buf) - 1] = ’\0’;

gsasl_property_set (sctx, GSASL_PASSCODE, buf);

Chapter 3: Using the Library 20

rc = GSASL_OK;
break;

case GSASL_AUTHID:
printf ("Enter username:\n");
fgets (buf, sizeof (buf) - 1, stdin);
buf [strlen (buf) - 1] = °\0’;

gsasl_property_set (sctx, GSASL_AUTHID, buf);
rc = GSASL_OK;
break;

default:
printf ("Unknown property! Don’t worry.\n");
break;

}

return rc;

}
Again, it is bad style to use a fixed size buffer. Mmm’kay.

Which properties you should handle is up to you. If you don’t know how to respond
to a certain property, simply return GSASL_NO_CALLBACK. The basic properties to support
are authentication identity (GSASL_AUTHID), authorization identity (GSASL_AUTHZID), and
password (GSASL_PASSWORD). See See Chapter 4 [Properties|, page 21, for the list of all
properties, and what your callback should (ideally) do for them, and which properties each
mechanism require in order to work.

Chapter 4: Properties 21

4 Properties

Properties with associated data:

GSASL_AUTHID

The authentication identity.

GSASL_AUTHZID

The authorization identity.

GSASL_PASSWORD

The password of the authentication identity.
GSASL_ANONYMOUS_TOKEN

The anonymous token. This is typically the email address of the user.
GSASL_SERVICE

The registered GSSAPI service name of the application service, e.g. “imap”. While
the names are registered for GSSAPI, other mechanisms such as DIGEST-MD5 may
also use this.

GSASL_HOSTNAME
Should be the local host name of the machine.
GSASL_GSSAPI_DISPLAY_NAME

Contain the GSSAPI “display name”, set by the server GSSAPI mechanism. Typically
you retrieve this property in your callback, when invoked for GSASL_VALIDATE_GSSAPI.

GSASL_REALM

The name of the authentication domain. This is used by several mechanisms, including
DIGEST-MD5, GSS-API, KERBEROS_V5 and NTLM.

GSASL_PASSCODE

The SecurID passcode.

GSASL_PIN

The SecurID personal identification number (PIN).
GSASL_SUGGESTED_PIN

A SecurID personal identification number (PIN) suggested by the server.
GSASL_DIGEST_MD5_HASHED_PASSWORD

For the DIGEST-MDb5 mechanism, this is a hashed password. It is used in servers to
avoid storing clear-text credentials.

GSASL_QOPS

The DIGEST-MDS5 server query for this property to get the set of quality of protection
(QOP) values to advertise. The property holds strings with comma separated keywords
denoting the set of qops to use, for example qop-auth, qop-int. Valid keywords are
qop-auth, qop-int, and qop-conf.

GSASL_QOP

The DIGEST-MD?5 client query for this property to get the quality of protection (QOP)
values to request. The property value is one of the keywords for GSASL_QOPS. The
client must chose one of the QOP values offered by the server (which may be inspected
through the GSASL_QOPS property).

Chapter 4: Properties 22

Abstract properties, used to trigger the callback, typically used in servers to validate
client credentials:

e GSASL_VALIDATE_SIMPLE

You may retrieve GSASL_AUTHID, GSASL_AUTHZID and GSASL_PASSWORD and
use them to make an authentication and authorization decision.

e GSASL_VALIDATE_EXTERNAL

Used by EXTERNAL mechanism on the server side to validate the client. The
GSASL_AUTHID will contain the authorization identity of the client.

e GSASL_VALIDATE_ANONYMOUS

Used by ANONYMOUS mechanism on the server side to validate the client. The
GSASL_ANONYMOUS_TOKEN will contain token that identity the client.

e GSASL_VALIDATE_GSSAPI

Used by the GSSAPI mechanism on the server side, to validate the client. You may
retrieve the authorization identity from GSASL_AUTHZID and the GSS-API display
name from GSASL_GSSAPI_DISPLAY_NAME.

e GSASL_VALIDATE_SECURID

Used by SECURID mechanism on the server side to validate client. The
GSASL_AUTHID, GSASL_AUTHZID, GSASL_PASSCODE, and GSASL_PIN will be

set. It can return GSASL_SECURID_SERVER_NEED_ADDITIONAL_PASSCODE

to ask the client to supply another passcode, and GSASL_SECURID_SERVER_NEED_NEW _PIN
to require the client to supply a new PIN code.

Chapter 5: Mechanisms 23

5 Mechanisms

Different SASL mechanisms have different requirements on the application using it. To
handle these differences the library can use a callback function into your application in
several different ways. Some mechanisms, such as ‘PLAIN’, are simple to explain and use.
The client callback query the user for a username and password. The server callback hand
the username and password into any local policy deciding authentication system (such as
‘/etc/passwd’ via PAM).

Mechanism such as ‘CRAM-MD5’ and ‘DIGEST-MD5’ uses hashed passwords. The client
callback behaviour is the same as for PLAIN. However, the server do not receive the plain
text password over the network but rather a hash of it. Existing policy deciding systems like
PAM cannot handle this, so the server callback for these mechanisms are more complicated.

Further, mechanisms like GSSAPI (Kerberos 5) assume a specific authentication system.
In theory this means that the SASL library would not need to interact with the application,
but rather call this specific authentication system directly. However, some callbacks are
supported anyway, to modify the behaviour of how the specific authentication system is
used (i.e., to handle “super-user” login as some other user).

Some mechanisms, like ‘EXTERNAL’ and ‘ANONYMOUS’ are entirely dependent on callbacks.

5.1 The EXTERNAL mechanism

The EXTERNAL mechanism is used to authenticate a user to a server based on out-of-band
authentication. EXTERNAL is typically used over TLS authenticated channels. Note that
in the server, you need to make sure that TLS actually authenticated the client successfully.
It is normally not sufficient that TLS is used, since they also support anonymous modes.

In the client, this mechanism is always enabled, and will send the GSASL_AUTHZID prop-
erty as the authorization name to the server, if the property is set. If the property is not
set, the empty authorization name is sent. You need not implement a callback.

In the server, this mechanism will invoke the GSASL_VALIDATE_EXTERNAL callback to
decide whether the client is authenticated and authorized to log in. Your callback can
retrieve the GSASL_AUTHZID property to inspect the requested authorization name from the
client.

5.2 The ANONYMOUS mechanism

The ANONYMOUS mechanism is used to “authenticate” clients to anonymous services;
or rather, just indicate that the client wishes to use the service anonymously. The client
sends a token, usually her email address, which serve the purpose of some trace information
suitable for log files. The token is not permitted to be empty.

In the client, this mechanism is always enabled, and will send the GSASL_ANONYMQOUS_
TOKEN property as the trace information to the server.

In the server, this mechanism will invoke the GSASL_VALIDATE_ANONYMQOUS callback to
decide whether the client should be permitted to log in. Your callback can retrieve the
GSASL_ANONYMOUS_TOKEN property to, for example, save it in a log file. The token is nor-
mally not used to decide whether the client should be permitted to log in or not.

Chapter 5: Mechanisms 24

5.3 The PLAIN mechanism

The PLAIN mechanism uses username and password to authenticate users. Two user names
are relevant. The first, the authentication identity, indicate the credential holder, i.e., whom
the provided password belongs to. The second, the authorization identity, is typically
empty, to indicate that the user requests to log on to the server as herself. However, if
the authorization identity is not empty, the server should decide whether the authenticated
user may log on as the authorization identity. Normally, only “super-user” accounts such
as ‘admin’ or similar should be allowed this.

In the client, this mechanism is always enabled, and require the GSASL_AUTHID and
GSASL_PASSWORD properties. If set, GSASL_AUTHZID will also be used.

In the server, the mechanism is always enabled. Two approaches to authenticate and
authorize the client is provided.

In the first approach, the server side of the mechanism will invoke the GSASL_VALIDATE_
SIMPLE callback property to decide whether the client should be accepted or not. The
callback may inspect the GSASL_AUTHID, GSASL_AUTHID, and GSASL_PASSWORD properties.
These properties values will be normalized.

If the first approach fails (because, e.g., your callback return ‘GSASL_NO_CALLBACK’ to
signal that it does not implement GSASL_VALIDATE_SIMPLE) the mechanism will continue
to query the application for a password, via the GSASL_PASSWORD property. Your callback
may use the GSASL_AUTHID and GSASL_AUTHZID properties to select the proper password.
The password is then normalized and compared to the client credential.

Which approach to use? If your database store hashed passwords, you have no option,
but must use the first approach. If passwords in your user database are stored in prepared
(SASLprep) form, the first approach will be faster. If you do not have prepared passwords
available, you can use the second approach to make sure the password is prepared properly
before comparison.

5.4 The LOGIN mechanism

The LOGIN mechanism is a non-standard mechanism, and is similar to the PLAIN mecha-
nism except that LOGIN lack the support for authorization identities. Always use PLAIN
instead of LOGIN in new applications.

The callback behaviour is the same as for PLAIN, except that GSASL_AUTHZID is not
used nor required, and that the server do not normalize the password using SASLprep.

See Section A.2 [Use of SASLprep in LOGIN], page 62, for a proposed clarification of
the interpretation of a hypothetical LOGIN specification.

5.5 The CRAM-MD5 mechanism

The CRAM-MD?5 is a widely used, but officially deprecated (apparently in favor of DIGEST-
MD5), challenge-response mechanism that transfer hashed passwords instead of clear text
passwords. For insecure channels (e.g., when TLS is not used), it is safer than PLAIN. The
CRAM-MD5 mechanism do not support authorization identities; making the relationship
between CRAM-MDb5 and DIGEST-MD5 similar to the relationship between LOGIN and
PLAIN.

Chapter 5: Mechanisms 25

The disadvantage with hashed passwords is that the server cannot use normal authen-
tication infrastructures such as PAM, because the server must have access to the correct
password in order to validate an authentication attempt.

In the client, this mechanism is always enabled, and require the GSASL_AUTHID and
GSASL_PASSWORD properties.

In the server, the mechanism will invoke the GSASL_PASSWORD callback, which may use
the GSASL_AUTHID property to determine which users’ password should be used. The GSASL_
AUTHID will be in normalized form. The server will then normalize the returned password,
and compare the client response with the computed correct response, and accept the user
accordingly.

See Section A.1 [Use of SASLprep in CRAM-MD5], page 62, for a clarification on the
interpretation of the CRAM-MD5 specification that this implementation rely on.

5.6 The DIGEST-MD5 mechanism

The DIGEST-MD5 mechanism is based on repeated hashing using MD5, which after the
MD5 break may be argued to be weaker than HMAC-MD5, but supports more features. For
example, authorization identities and data integrity and privacy protection are supported.
Like CRAM-MD5, only a hashed password is transfered. Consequently, DIGEST-MDS5 need
access to the correct password (although it may be hashed, another improvement compared
to CRAM-MD5) to verify the client response. Alas, this make it impossible to use, e.g.,
PAM on the server side.

In the client, this mechanism is always enabled, and require the GSASL_AUTHID, GSASL_
PASSWORD, GSASL_SERVICE, and GSASL_HOSTNAME properties. If set, GSASL_AUTHZID and
GSASL_REALM will also be used.

In the server, the mechanism will first invoke the GSASL._DIGEST_MD5_HASHED_PASSWORD
callback to get the user’s hashed password. If the callback doesn’t supply a hashed password,
the GSASL_PASSWORD callback will be invoked. Both callbacks may use the GSASL_AUTHID,
GSASL_AUTHZID and GSASL_REALM properties to determine which users’ password should be
used. The server will then compare the client response with a computed correct response,
and accept the user accordingly.

The server uses the GSASL_QOPS callback to get the set of quality of protection values to
use. By default, it advertise support for authentication (qop-auth) only. You can use the
callback to, for example, make the server advertise support for authentication with integrity
layers.

The client uses the GSASL_QOP callback to get the quality of protection value to request.
The client must chose be one of the QOP values offered by the server (which may be
inspected through the GSASL_QOPS property). If the client does not return a value, qop-
auth is used by default.

5.7 The NTLM mechanism

The NTLM is a non-standard mechanism. Do not use it in new applications, and do not
expect it to be secure. Currently only the client side is supported.

Chapter 5: Mechanisms 26

In the client, this mechanism is always enabled, and require the GSASL_AUTHID and
GSASL_PASSWORD properties. It will set the ‘domain’ field in the NTLM request to the value
of GSASL_REALM. Some servers reportedly need non-empty but arbitrary values in that field.

5.8 The SECURID mechanism

The SECURID mechanism uses authentication and authorization identity together with a
passcode from a hardware token to authenticate users.

In the client, this mechanism is always enabled, and require the GSASL_AUTHID and
GSASL_PASSCODE properties. If set, GSASL_AUTHZID will also be used. If the server re-
quests it, the GSASL_PIN property is also required, and its callback may inspect the GSASL_
SUGGESTED_PIN property to discover a server-provided PIN to use.

In the server, this mechanism will invoke the GSASL_VALIDATE_SECURID callback. The
callback may inspect the GSASL_AUTHID, GSASL_AUTHZID, and GSASL_PASSCODE properties.
The callback can return GSASL_SECURID_SERVER_NEED_ADDITIONAL_PASSCODE to ask for
another additional passcode from the client. The callback can return GSASL_SECURID_
SERVER_NEED_NEW_PIN to ask for a new PIN code from the client, in which case it may
also set the GSASL_SUGGESTED_PIN property to indicate a recommended new PIN. If the
callbacks has invoked again, after having returned GSASL_SECURID_SERVER_NEED_NEW_PIN,
it may also inspect the GSASL_PIN property, in addition to the other properties, to find out
the client selected PIN code.

5.9 The GSSAPI mechanism

GSS-API is a framework, similar to SASL, for authentication. The GSSAPI mechanism
only support the Kerberos 5 GSS-API mechanism, though. (A new SASL mechanism to
support non-Kerberos 5 GSS-API mechanisms may be supported in the future.)

In the client, the mechanism is enabled only if the user has acquired credentials (i.e.,
a ticket granting ticket), and require the GSASL_AUTHID, GSASL_SERVICE, and GSASL_
HOSTNAME properties.

In the server, the mechanism require the GSASL_SERVICE, and GSASL_HOSTNAME prop-
erties, and will invoke the GSASL_VALIDATE_GSSAPI callback in order to validate the user.
The callback may inspect the GSASL_AUTHZID and GSASL_GSSAPI_DISPLAY_NAME proper-
ties to decide whether to authorize the user. Note that authentication is performed by the
GSS-API library.

XXX: explain more about quality of service, maximum buffer size, etc.

5.10 The KERBEROS_V5 mechanism

The KERBEROS_V5 is an experimental mechanism, the protocol specification is available
on the GNU SASL homepage. It can operate in three modes, non-infrastructure mode,
infrastructure mode and proxied infrastructure mode. Currently only non-infrastructure
mode is supported.

In the non-infrastructure mode, it works as a superset of most features provided by
PLAIN, CRAM-MD5, DIGEST-MD5 and GSSAPI while at the same time building on
what is believed to be proven technology (the RFC 1510 network security system). In the
non-infrastructure mode, the client must specify (via callbacks) the name of the user, and

Chapter 5: Mechanisms 27

optionally the server name and realm. The server must be able to retrieve passwords given
the name of the user.

In the infrastructure mode (proxied or otherwise), it allows clients and servers to au-
thenticate via SASL in an RFC 1510 environment, using a trusted third party, a “Key
Distribution Central”. In the normal mode, clients aquire tickets out of band and then
invokes a one roundtrip AP-REQ and AP-REP exchange. In the proxied mode, which can
be used by clients without IP addresses or without connectivity to the KDC (e.g., when
the KDC is IPv4 and the client is IPV6-only), the client uses the server to proxy ticket re-
quests and finishes with the AP-REQ/AP-REP exchange. In infrastructure mode (proxied
or otherwise), the client nor server need to implement any callbacks (this will likely change
later, to allow a server to authorize users, similar to the GSSAPI callback).

XXX: update when implementation has matured

Chapter 6: Global Functions 28

6 Global Functions

gsasl_init

int gsasl_init (Gsasl ** ctx) [Function]
ctx: pointer to libgsasl handle.

This functions initializes libgsasl. The handle pointed to by ctx is valid for use with
other libgsasl functions iff this function is successful. It also register all builtin SASL
mechanisms, using gsasl_register().

Return value: GSASL_OK iff successful, otherwise GSASL_MALLOC_ERROR.
gsasl_done

void gsasl_done (Gsasl * ctx) [Function]
ctx: libgsasl handle.

This function destroys a libgsasl handle. The handle must not be used with other
libgsasl functions after this call.

gsasl_client_mechlist

int gsasl_client_mechlist (Gsasl * ctx, char ** out) [Function]
ctx: libgsasl handle.

out: newly allocated output character array.

Return a newly allocated string containing SASL names, separated by space, of mech-
anisms supported by the libgsasl client. out is allocated by this function, and it is
the responsibility of caller to deallocate it.

Return value: Returns GSASL_OK if successful, or error code.
gsasl_server_mechlist

int gsasl_server_mechlist (Gsasl * ctx, char ** out) [Function]
ctx: libgsasl handle.

out: newly allocated output character array.

Return a newly allocated string containing SASL names, separated by space, of mech-
anisms supported by the libgsasl server. out is allocated by this function, and it is
the responsibility of caller to deallocate it.

Return value: Returns GSASL_OK if successful, or error code.
gsasl_client_support_p

int gsasl_client_support_p (Gsasl * ctx, const char * name) [Function]
ctx: libgsasl handle.

name: name of SASL mechanism.
Decide whether there is client-side support for a specified mechanism.

Return value: Returns 1 if the libgsasl client supports the named mechanism, other-
wise 0.

Chapter 6: Global Functions 29

gsasl_server_support_p

int gsasl_server_support_p (Gsasl * ctx, const char * name) [Function]
ctx: libgsasl handle.

name: name of SASL mechanism.
Decide whether there is server-side support for a specified mechanism.

Return value: Returns 1 if the libgsasl server supports the named mechanism, other-
wise 0.

gsasl_client_suggest_mechanism

const char * gsasl_client_suggest_mechanism (Gsasl * ctx, [Function]
const char * mechlist)
ctx: libgsasl handle.

mechlist: input character array with SASL mechanism names, separated by invalid
characters (e.g. SPC).

Given a list of mechanisms, suggest which to use.

Return value: Returns name of "best" SASL mechanism supported by the libgsasl
client which is present in the input string, or NULL if no supported mechanism is
found.

gsasl_register

int gsasl_register (Gsasl * ctx, const Gsasl-mechanism * mech) [Function]
ctx: pointer to libgsasl handle.

mech: plugin structure with information about plugin.

This function initialize given mechanism, and if successful, add it to the list of plugins
that is used by the library.

Return value: GSASL_OK iff successful, otherwise GSASL_MALLOC_ERROR.
Since: 0.2.0

Chapter 7: Callback Functions 30

7 Callback Functions

The callback is used by mechanisms to retrieve information, such as username and password,
from the application. In a server, the callback is used to decide whether a user is permitted
to log in or not. You tell the library of your callback function by calling gsasl_callback_
set.

Since your callback may need to access to data from other parts of your application, there
are hooks to store and retrieve application specific pointers. This avoid the use of global
variables in your application, which wouldn’t be thread safe. You store a pointer to some
information (opaque from the point of view of the library) by calling gsasl_callback_hook_
set and can later retrieve this data in your callback by calling gsasl_callback_hook_get.

gsasl_callback_set

void gsasl_callback_set (Gsasl * ctx, Gsasl callback_function cb) [Function]
ctx: handle received from gsasl_init().

cb: pointer to function implemented by application.

Store the pointer to the application provided callback in the library handle. The
callback will be used, via gsasl_callback(), by mechanisms to discover various pa-
rameters (such as username and passwords). The callback function will be called
with a Gsasl_property value indicating the requested behaviour. For example, for
GSASL_ANONYMOUS_TOKEN, the function is expected to invoke gsasl_property_set(CTX,
GSASL_ANONYMOUS_TOKEN, "token") where "token" is the anonymous token the ap-
plication wishes the SASL mechanism to use. See the manual for the meaning of all
parameters.

Since: 0.2.0
gsasl_callback

int gsasl_callback (Gsasl * ctx, Gsasl_session * sctx, [Function]
Gsasl_property prop)
ctx: handle received from gsasl_init (), may be NULL to derive it from sctx.

sctx: session handle.
prop: enumerated value of Gsasl_property type.

Invoke the application callback. The prop value indicate what the callback is expected
to do. For example, for GSASL_ANONYMOUS_TOKEN, the function is expected to invoke
gsasl_property_set(SCTX, GSASL_ANONYMOUS_TOKEN, "token") where "token" is the
anonymous token the application wishes the SASL mechanism to use. See the manual
for the meaning of all parameters.

Note that if no callback has been set by the application, but the obsolete callback
interface has been used, this function will translate the old callback interface into the
new. This interface should be sufficient to invoke all callbacks, both new and old.

Return value: Returns whatever the application callback return, or GSASL_NO_
CALLBACK if no application was known.

Since: 0.2.0

Chapter 7: Callback Functions 31

gsasl_callback_hook_set

void gsasl_callback_hook_set (Gsasl * ctx, void * hook) [Function]
ctx: libgsasl handle.

hook: opaque pointer to application specific data.
Store application specific data in the libgsasl handle.

The application data can be later (for instance, inside a callback) be retrieved by
calling gsasl_callback_hook_get(). This is normally used by the application to
maintain a global state between the main program and callbacks.

Since: 0.2.0
gsasl_callback_hook_get

void * gsasl_callback_hook_get (Gsasl * ctx) [Function]
ctx: libgsasl handle.

Retrieve application specific data from libgsasl handle.

The application data is set using gsasl_callback_hook_set(). This is normally
used by the application to maintain a global state between the main program and
callbacks.

Return value: Returns the application specific data, or NULL.
Since: 0.2.0

gsasl_session_hook_set

void gsasl_session_hook_set (Gsasl_session * sctx, void * hook) [Function]
sctx: libgsasl session handle.

hook: opaque pointer to application specific data.
Store application specific data in the libgsasl session handle.

The application data can be later (for instance, inside a callback) be retrieved by
calling gsasl_session_hook_get(). This is normally used by the application to
maintain a per-session state between the main program and callbacks.

Since: 0.2.14
gsasl_session_hook_get

void * gsasl_session_hook_get (Gsaslsession * sctx) [Function]
sctx: libgsasl session handle.

Retrieve application specific data from libgsasl session handle.

The application data is set using gsasl_callback_hook_set(). This is normally
used by the application to maintain a per-session state between the main program
and callbacks.

Return value: Returns the application specific data, or NULL.

Since: 0.2.14

Chapter 8: Property Functions 32

8 Property Functions

gsasl_property_set

void gsasl_property_set (Gsaslsession * sctx, Gsasl_property [Function]
prop, const char * data)
sctx: session handle.

prop: enumerated value of Gsasl_property type, indicating the type of data in data.
data: zero terminated character string to store.

Make a copy of data and store it in the session handle for the indicated property
prop.

You can immediately deallocate data after calling this function, without affecting the
data stored in the session handle.

Since: 0.2.0
gsasl_property_set_raw

void gsasl_property_set_raw (Gsasl_session * sctx, Gsasl_property [Function]
prop, const char * data, size_t len)
sctx: session handle.

prop: enumerated value of Gsasl_property type, indicating the type of data in data.
data: character string to store.
len: length of character string to store.

Make a copy of len sized data and store a zero terminated version of it in the session
handle for the indicated property prop.

You can immediately deallocate data after calling this function, without affecting the
data stored in the session handle.

Except for the length indicator, this function is identical to gsasl_property_set.
Since: 0.2.0

gsasl_property_fast

const char * gsasl_property_fast (Gsaslsession * sctx, [Function]
Gsasl_property prop)
sctx: session handle.

prop: enumerated value of Gsasl_property type, indicating the type of data in data.
Retrieve the data stored in the session handle for given property prop.

The pointer is to live data, and must not be deallocated or modified in any way.
This function will not invoke the application callback.

Return value: Return property value, if known, or NULL if no value known.

Since: 0.2.0

Chapter 8: Property Functions 33

gsasl_property_get

const char * gsasl_property_get (Gsaslsession * sctx, [Function]
Gsasl_property prop)
sctx: session handle.
prop: enumerated value of Gsasl_property type, indicating the type of data in data.

Retrieve the data stored in the session handle for given property prop, possibly in-
voking the application callback to get the value.

The pointer is to live data, and must not be deallocated or modified in any way.
This function will invoke the application callback, using gsasl_callback(), when a
property value is not known.

If no value is known, and no callback is specified or if the callback fail to return
data, and if any obsolete callback functions has been set by the application, this
function will try to call these obsolete callbacks, and store the returned data as the
corresponding property. This behaviour of this function will be removed when the
obsolete callback interfaces are removed.

Return value: Return data for property, or NULL if no value known.
Since: 0.2.0

Chapter 9: Session Functions 34

9 Session Functions

gsasl_client_start

int gsasl_client_start (Gsasl * ctx, const char * mech, [Function]
Gsasl_session ** sctx)
ctx: libgsasl handle.

mech: name of SASL mechanism.
sctx: pointer to client handle.

This functions initiates a client SASL authentication. This function must be called
before any other gsasl_client_*() function is called.

Return value: Returns GSASL_OK if successful, or error code.
gsasl_server_start

int gsasl_server_start (Gsasl * ctx, const char * mech, [Function]
Gsasl_session ** sctx)
ctx: libgsasl handle.

mech: name of SASL mechanism.
sctx: pointer to server handle.

This functions initiates a server SASL authentication. This function must be called
before any other gsasl_server_*() function is called.

Return value: Returns GSASL_OK if successful, or error code.
gsasl_step

int gsasl_step (Gsaslsession * sctx, const char * input, size_t [Function]
input_len, char ** output, size_t * output_len)

sctx: libgsasl session handle.
input: input byte array.
input_len: size of input byte array.
output: newly allocated output byte array.
output_len: pointer to output variable with size of output byte array.
Perform one step of SASL authentication. This reads data from the other end (from
input and input_len), processes it (potentially invoking callbacks to the application),
and writes data to server (into newly allocated variable output and output_len that
indicate the length of output).
The contents of the output buffer is unspecified if this functions returns anything
other than GSASL_OK or GSASL_NEEDS_MORE. If this function return GSASL_OK or

GSASL_NEEDS_MORE, however, the output buffer is allocated by this function, and it
is the responsibility of caller to deallocate it by calling free (output).

Return value: Returns GSASL_OK if authenticated terminated successfully, GSASL_
NEEDS_MORE if more data is needed, or error code.

Chapter 9: Session Functions 35

gsasl_step64

int gsasl_step64 (Gsasl-session * sctx, const char * b64input, char [Function]
** b64output)
sctx: libgsasl client handle.

b64input: input base64 encoded byte array.
b64output: newly allocated output base64 encoded byte array.

This is a simple wrapper around gsasl_step() that base64 decodes the input and
base64 encodes the output.

The contents of the b64output buffer is unspecified if this functions returns anything
other than GSASL_OK or GSASL_NEEDS_MORE. If this function return GSASL_OK or
GSASL_NEEDS_MORE, however, the b64output buffer is allocated by this function, and
it is the responsibility of caller to deallocate it by calling free (b64output).

Return value: Returns GSASL_OK if authenticated terminated successfully, GSASL_
NEEDS_MORE if more data is needed, or error code.

gsasl_finish

void gsasl_finish (Gsasl_session * sctx) [Function]
sctx: libgsasl session handle.

Destroy a libgsasl client or server handle. The handle must not be used with other
libgsasl functions after this call.

gsasl_encode

int gsasl_encode (Gsasl session * sctx, const char * input, size_t [Function]
input_len, char ** output, size_-t * output_len)
sctx: libgsasl session handle.

input: input byte array.

input_len: size of input byte array.

output: newly allocated output byte array.
output_len: size of output byte array.

Encode data according to negotiated SASL mechanism. This might mean that data
is integrity or privacy protected.

The output buffer is allocated by this function, and it is the responsibility of caller
to deallocate it by calling free(output).

Return value: Returns GSASL_OK if encoding was successful, otherwise an error code.
gsasl_decode

int gsasl_decode (Gsasl session * sctx, const char * input, size_t [Function]
input_len, char ** output, size_t * output_len)
sctx: libgsasl session handle.

input: input byte array.

input_len: size of input byte array.

Chapter 9: Session Functions 36

output: newly allocated output byte array.
output_len: size of output byte array.

Decode data according to negotiated SASL mechanism. This might mean that data
is integrity or privacy protected.

The output buffer is allocated by this function, and it is the responsibility of caller
to deallocate it by calling free(output).

Return value: Returns GSASL_OK if encoding was successful, otherwise an error code.
gsasl_mechanism_name

const char * gsasl_mechanism_name (Gsasl_session * sctx) [Function]
sctx: libgsasl session handle.

This function returns the name of the SASL mechanism used in the session.

Return value: Returns a zero terminated character array with the name of the SASL
mechanism, or NULL if not known.

Since: 0.2.28

Chapter 10: Utilities 37

10 Utilities

gsasl_saslprep

int gsasl_saslprep (const char * in, Gsasl_saslprep_flags flags, char ~ [Function]
** out, int * stringpreprc)
in: a UTF-8 encoded string.

flags: any SASLprep flag, e.g., GSASL_ALLOW_UNASSIGNED.
out: on exit, contains newly allocated output string.
stringprepre: if non-NULL, will hold precise stringprep return code.

Prepare string using SASLprep. On success, the out variable must be deallocated by
the caller.

Return value: Returns GSASL_OK on success, or GSASL_SASLPREP_ERROR on error.
Since: 0.2.3

gsasl_base64_to

int gsasl_base64_to (const char * in, size_t inlen, char ** out, [Function]
size_t * outlen)
in: input byte array

inlen: size of input byte array
out: pointer to newly allocated output byte array
outlen: pointer to size of newly allocated output byte array

Encode data as base64. The string is zero terminated, and outlen holds the length
excluding the terminating zero. The out buffer must be deallocated by the caller.

Return value: Returns GSASL_OK on success, or GSASL_MALLOC_ERROR if input was
too large or memory allocation fail.

Since: 0.2.2
gsasl_base64_from

int gsasl_base64_from (const char * in, size_t inlen, char ** out, [Function]
size_t * outlen)
in: input byte array

inlen: size of input byte array

out: pointer to newly allocated output byte array

outlen: pointer to size of newly allocated output byte array

Decode Base64 data. The out buffer must be deallocated by the caller.

Return value: Returns GSASL_OK on success, GSASL_BASE64_ERROR if input was in-
valid, and GSASL_MALLOC_ERROR on memory allocation errors.

Since: 0.2.2

Chapter 10: Utilities 38

gsasl_simple_getpass

int gsasl_simple_getpass (const char * filename, const char * [Function]
username, char ** key)
filename: filename of file containing passwords.

username: username string.
key: newly allocated output character array.

Retrieve password for user from specified file. The buffer key contain the password
if this function is successful. The caller is responsible for deallocating it.

The file should be on the UoW "MD5 Based Authentication" format, which means
it is in text format with comments denoted by # first on the line, with user entries
looking as "usernameTABpassword". This function removes CR and LF at the end
of lines before processing. TAB, CR, and LF denote ASCII values 9, 13, and 10,
respectively.

Return value: Return GSASL_OK if output buffer contains the password, GSASL_
AUTHENTICATION_ERROR if the user could not be found, or other error code.
gsasl_nonce
int gsasl_nonce (char * data, size_-t datalen) [Function]
data: output array to be filled with unpredictable random data.
datalen: size of output array.
Store unpredictable data of given size in the provided buffer.

Return value: Returns GSASL_OK iff successful.

gsasl_random

int gsasl_random (char * data, size_t datalen) [Function]
data: output array to be filled with strong random data.
datalen: size of output array.

Store cryptographically strong random data of given size in the provided buffer.

Return value: Returns GSASL_OK iff successful.

gsasl_md5

int gsasl_md5 (const char * in, size_t inlen, char * out[16]) [Function]
in: input character array of data to hash.
inlen: length of input character array of data to hash.

Compute hash of data using MD5. The out buffer must be deallocated by the caller.
Return value: Returns GSASL_OK iff successful.

Chapter 10: Utilities 39

gsasl_hmac_md5

int gsasl_hmac_md5 (const char * key, size_t keylen, const char * in, [Function]
size_t inlen, char * outhash[16])
key: input character array with key to use.

keylen: length of input character array with key to use.
in: input character array of data to hash.
inlen: length of input character array of data to hash.

Compute keyed checksum of data using HMAC-MDb5. The outhash buffer must be
deallocated by the caller.

Return value: Returns GSASL_OK iff successful.

Chapter 11: Memory Handling 40

11 Memory Handling

gsasl_free

void gsasl_free (void * ptr) [Function]
ptr: memory pointer
Invoke free(ptr) to de-allocate memory pointer. Typically used on strings allocated
by other libgsasl functions.
This is useful on Windows where libgsasl is linked to one CRT and the application is
linked to another CRT. Then malloc/free will not use the same heap. This happens
if you build libgsasl using mingw32 and the application with Visual Studio.

Since: 0.2.19

Chapter 12: Error Handling 41

12 Error Handling

Most functions in the GNU SASL Library are returning an error if they fail. For this reason,
the application should always catch the error condition and take appropriate measures, for
example by releasing the resources and passing the error up to the caller, or by displaying
a descriptive message to the user and cancelling the operation.

Some error values do not indicate a system error or an error in the operation, but the
result of an operation that failed properly.

12.1 Error values

Errors are returned as int values.

The value of the symbol GSASL_0K is guaranteed to always be 0, and all other error codes
are guaranteed to be non-0, so you may use that information to build boolean expressions
involving return codes. Otherwise, an application should not depend on the particular value
for error codes, and are encouraged to use the constants even for GSASL_OK to improve
readability. Possible values are:

GSASL_0K Libgsasl success

GSASL_NEEDS_MORE
SASL mechanism needs more data

GSASL_UNKNOWN_MECHANISM
Unknown SASL mechanism

GSASL_MECHANISM_CALLED_TOO_MANY_TIMES
SASL mechanism called too many times

GSASL_TOO_SMALL_BUFFER
SASL function needs larger buffer (internal error)

GSASL_FOPEN_ERROR
Could not open file in SASL library

GSASL_FCLOSE_ERROR
Could not close file in SASL library

GSASL_MALLOC_ERROR
Memory allocation error in SASL library

GSASL_BASE64_ERROR
Base 64 coding error in SASL library

GSASL_CRYPTO_ERROR
Low-level crypto error in SASL library

GSASL_NEED_CLIENT_ANONYMOUS_CALLBACK
SASL mechanism needs gsasl_client_callback_anonymous() callback (applica-
tion error)

GSASL_NEED_CLIENT_PASSWORD_CALLBACK
SASL mechanism needs gsasl_client_callback_password() callback (application
error)

Chapter 12: Error Handling 42

GSASL_NEED_CLIENT_PASSCODE_CALLBACK
SASL mechanism needs gsasl_client_callback_passcode() callback (application
error)

GSASL_NEED_CLIENT_PIN_CALLBACK
SASL mechanism needs gsasl_client_callback_pin() callback (application error)

GSASL_NEED_CLIENT_AUTHORIZATION_ID_CALLBACK
SASL mechanism needs gsasl_client_callback_authorization_id() callback (ap-
plication error)

GSASL_NEED_CLIENT_AUTHENTICATION_ID_CALLBACK
SASL mechanism needs gsasl_client_callback_authentication_id() callback (ap-
plication error)

GSASL_NEED_CLIENT_SERVICE_CALLBACK
SASL mechanism needs gsasl_client_callback_service() callback (application er-
ror)

GSASL_NEED_SERVER_VALIDATE_CALLBACK
SASL mechanism needs gsasl_server_callback_validate() callback (application
error)

GSASL_NEED_SERVER_CRAM_MD5_CALLBACK
SASL mechanism needs gsasl_server_callback_cram_md5() callback (application
error)

GSASL_NEED_SERVER_DIGEST_MD5_CALLBACK
SASL mechanism needs gsasl_server_callback_digest_md5() callback (applica-
tion error)

GSASL_NEED_SERVER_EXTERNAL_CALLBACK
SASL mechanism needs gsasl_server_callback_external() callback (application
error)

GSASL_NEED_SERVER_ANONYMOUS_CALLBACK
SASL mechanism needs gsasl_server_callback_anonymous() callback (applica-
tion error)

GSASL_NEED_SERVER_REALM_CALLBACK
SASL mechanism needs gsasl_server_callback_realm() callback (application er-
ror)

GSASL_NEED_SERVER_SECURID_CALLBACK
SASL mechanism needs gsasl_server_callback_securid() callback (application er-
ror)

GSASL_NEED_SERVER_SERVICE_CALLBACK
SASL mechanism needs gsasl_server_callback_service() callback (application er-
ror)

GSASL_NEED_SERVER_GSSAPI_CALLBACK
SASL mechanism needs gsasl_server_callback_gssapi() callback (application er-
ror)

Chapter 12: Error Handling 43

GSASL_NEED_SERVER_RETRIEVE_CALLBACK
SASL mechanism needs gsasl_server_callback_retrieve() callback (application
error)

GSASL_UNICODE_NORMALIZATION_ERROR
Failed to perform Unicode Normalization on string.

GSASL_SASLPREP_ERROR
Could not prepare internationalized (non-ASCII) string.

GSASL_MECHANISM_PARSE_ERROR
SASL mechanism could not parse input

GSASL_AUTHENTICATION_ERROR
Error authenticating user

GSASL_CANNOT_GET_CTX
Cannot get internal library handle (library error)

GSASL_INTEGRITY_ERROR
Integrity error in application payload

GSASL_NO_MORE_REALMS
No more realms available (non-fatal)

GSASL_NO_CLIENT_CODE
Client-side functionality not available in library (application error)

GSASL_NO_SERVER_CODE
Server-side functionality not available in library (application error)

GSASL_GSSAPI_RELEASE_BUFFER_ERROR
GSSAPI library could not deallocate memory in gss_release_buffer() in SASL
library. This is a serious internal error.

GSASL_GSSAPI_IMPORT_NAME_ERROR
GSSAPI library could not understand a peer name in gss_import_name() in
SASL library. This is most likely due to incorrect service and/or hostnames.

GSASL_GSSAPI_INIT_SEC_CONTEXT_ERROR
GSSAPI error in client while negotiating security context in
gss_init_sec_context() in SASL library. = This is most likely due insuf-
ficient credentials or malicious interactions.

GSASL_GSSAPI_ACCEPT_SEC_CONTEXT_ERROR
GSSAPI error in server while negotiating security context in
gss_init_sec_context() in SASL library. This is most likely due insuf-
ficient credentials or malicious interactions.

GSASL_GSSAPI_UNWRAP_ERROR
GSSAPI error while decrypting or decoding data in gss_unwrap() in SASL
library. This is most likely due to data corruption.

GSASL_GSSAPI_WRAP_ERROR
GSSAPI error while encrypting or encoding data in gss_wrap() in SASL library.

Chapter 12: Error Handling 44

GSASL_GSSAPI_ACQUIRE_CRED_ERROR
GSSAPI error acquiring credentials in gss_acquire_cred() in SASL library.
This is most likely due to not having the proper Kerberos key available in
/etc/krbb.keytab on the server.

GSASL_GSSAPI_DISPLAY_NAME_ERROR
GSSAPI error creating a display name denoting the client in gss_display_name()
in SASL library. This is probably because the client supplied bad data.

GSASL_GSSAPI_UNSUPPORTED_PROTECTION_ERROR
Other entity requested integrity or confidentiality protection in GSSAPI mech-
anism but this is currently not implemented.

GSASL_KERBEROS_V5_INIT_ERROR
Kerberos V5 initialization failure.

GSASL_KERBEROS_V5_INTERNAL_ERROR
Kerberos V5 internal error.

GSASL_SECURID_SERVER_NEED_ADDITIONAL_PASSCODE
SecurID needs additional passcode.

GSASL_SECURID_SERVER_NEED_NEW_PIN
SecurID needs new pin.

GSASL_INVALID_HANDLE
The provided library handle was invalid (application error)

GSASL_NO_CALLBACK
No callback specified by caller (application error).

GSASL_NO_ANONYMOUS_TOKEN
Authentication failed because the anonymous token was not provided.

GSASL_NO_AUTHID
Authentication failed because the authentication identity was not provided.

GSASL_NO_AUTHZID
Authentication failed because the authorization identity was not provided.

GSASL_NO_PASSWORD
Authentication failed because the password was not provided.

GSASL_NO_PASSCODE
Authentication failed because the passcode was not provided.

GSASL_NO_PIN
Authentication failed because the pin code was not provided.

GSASL_NO_SERVICE
Authentication failed because the service name was not provided.

GSASL_NO_HOSTNAME
Authentication failed because the host name was not provided.

Chapter 12: Error Handling 45

12.2 Error strings

gsasl_strerror

const char * gsasl_strerror (int err) [Function]
err: libgsasl error code

Convert return code to human readable string explanation of the reason for the par-
ticular error code.

This string can be used to output a diagnostic message to the user.

Return value: Returns a pointer to a statically allocated string containing an expla-
nation of the error code err.

gsasl_strerror_name

const char * gsasl_strerror_name (int err) [Function]
err: libgsasl error code

Convert return code to human readable string representing the error code symbol
itself. For example, gsasl_strerror_name(GSASL_OK) returns the string "GSASL_OK".

This string can be used to output a diagnostic message to the user.

Return value: Returns a pointer to a statically allocated string containing a string
version of the error code err, or NULL if the error code is not known.

Since: 0.2.29

Chapter 13: Examples 46

13 Examples

This chapter contains example code which illustrate how the GNU SASL Library can be
used when writing your own application.

13.1 Example 1

/

*

client.c —--- Example SASL client.
Copyright (C) 2004, 2005, 2007, 2009 Simon Josefsson

This file is part of GNU SASL.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <gsasl.h>

static void
client_authenticate (Gsasl_session * session)

{

char buf [BUFSIZ] = "";
char *p;
int rc;

/* This loop mimic a protocol where the client send data first. */

do
{
/* Generate client output. */
rc = gsasl_step64 (session, buf, &p);

Chapter 13: Examples 47

if (rc == GSASL_NEEDS_MORE || rc == GSASL_OK)
{
/* If sucessful, print it. x*/
printf ("Output:\n%s\n", p);

free (p);

}

if (rc == GSASL_NEEDS_MORE)

{
/* If the client need more data from server, get it here. %/
printf ("Input base64 encoded data from server:\n");
fgets (buf, sizeof (buf) - 1, stdin);
if (buf[strlen (buf) - 1] == ’\n’)

buf [strlen (buf) - 1] = °\0’;
}

+
while (rc == GSASL_NEEDS_MORE);

printf ("\n");

if (rc !'= GSASL_OK)

{
printf ("Authentication error (%d): ¥%s\n", rc, gsasl_strerror (rc));
return;
b
/* The client is done. Here you would typically check if the server
let the client in. If not, you could try again. x*/

printf ("If server accepted us, we’re done.\n");

¥

static void

client (Gsasl * ctx)

{
Gsasl_session *session;
const char *mech = "PLAIN";
int rc;

/* Create new authentication session. */
if ((rc = gsasl_client_start (ctx, mech, &session)) != GSASL_0K)
{
printf ("Cannot initialize client (%d): ¥%s\n", rc, gsasl_strerror (rc));
return;

}

Chapter

in
ma

{

13: Examples

/* Set username and password in session handle.
lost when this session is deallocated below.

48

This info will be
*/

gsasl_property_set (session, GSASL_AUTHID, "jas");
gsasl_property_set (session, GSASL_PASSWORD, "secret");

/* Do it. */
client_authenticate (session);

/* Cleanup. */
gsasl_finish (session);

t
in (int argc, char *argv[])

Gsasl *ctx = NULL;
int rc;

/* Initialize library. x*/
if ((rc = gsasl_init (&ctx)) != GSASL_OK)
{

printf ("Cannot initialize libgsasl (%d):

return 1;

¥

/* Do it. */
client (ctx);

/* Cleanup. */
gsasl_done (ctx);

return O;

13.2 Example 2

/*

*
*
*
*
*
*
*
*
*
*

%s", rc, gsasl_strerror (rc));

client-serverfirst.c --- Example SASL client, where server send data first.
Copyright (C) 2004, 2005, 2007, 2009 Simon Josefsson

This file is part of GNU SASL.

This program is free software:

you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

Chapter 13: Examples 49

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

¥ X X X X ¥ ¥

*

/

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <gsasl.h>

static void
client_authenticate (Gsasl_session * session)
{

char buf[BUFSIZ] = "";

char *p;

int rc;

/* This loop mimic a protocol where the server get to send data first. x*/

do
{
printf ("Input base64 encoded data from server:\n");
fgets (buf, sizeof (buf) - 1, stdin);
if (buf [strlen (buf) - 1] == ’\n’)
buf [strlen (buf) - 1] = ’\0’;
rc = gsasl_step64 (session, buf, &p);
if (rc == GSASL_NEEDS_MORE || rc == GSASL_OK)
{
printf ("Output:\n%s\n", p);
free (p);
}
}

while (rc == GSASL_NEEDS_MORE) ;
printf ("\n");
if (rc !'= GSASL_OK)

{

printf ("Authentication error (%d): %s\n", rc, gsasl_strerror (rc));

Chapter 13: Examples

¥

return;

}

/* The client is done.
let the client in.

50

Here you would typically check if the server
If not, you could try again. */

printf ("If server accepted us, we’re done.\n");

static void
client (Gsasl * ctx)

{

Gsasl_session *session;
const char *mech = "CRAM-MD5";
int rc;

/* Create new authentication session. */

if ((rc = gsasl_client_start (ctx, mech, &session))
{
printf ("Cannot initialize client (%d):
return;
}

/* Set username and password in session handle.
lost when this session is deallocated below.

= GSASL_OK)

%s\n", rc, gsasl_strerror (rc));

This info will be
x/

gsasl_property_set (session, GSASL_AUTHID, "jas");

gsasl_property_set (session, GSASL_PASSWORD,

/* Do it. */
client_authenticate (session);

/* Cleanup. */
gsasl_finish (session);

int
main (int argc, char xargv[])

{

Gsasl *ctx =
int rc;

NULL;

/* Initialize library. x*/
if ((rc = gsasl_init (&ctx)) != GSASL_0K)
{

printf ("Cannot initialize libgsasl (%d):

return 1;

3

"secret");

%s", rc, gsasl_strerror (rc));

Chapter 13: Examples 51

13.3
/

#
#
#
#

#

/* Do it. */
client (ctx);

/* Cleanup. */
gsasl_done (ctx);

return O;

Example 3

* client-mech.c --- Example SASL client, with a choice of mechanism to use.
* Copyright (C) 2004, 2005, 2007, 2009 Simon Josefsson

*

* This file is part of GNU SASL.

*

* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or

*x (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program. If not, see <http://www.gnu.org/licenses/>.
*

x/

include <stdarg.h>

include <stdio.h>
include <stdlib.h>
include <string.h>

include <gsasl.h>

static void

C

{

lient_authenticate (Gsasl_session * session)
char buf [BUFSIZ] = "";
char *p;

int rc;

/* This loop mimic a protocol where the server get to send data first. x*/

Chapter 13: Examples 52

do
{
printf ("Input base64 encoded data from server:\n");
fgets (buf, sizeof (buf) - 1, stdin);
if (buf[strlen (buf) - 1] == ’\n’)
buf [strlen (buf) - 1] = °\0’;
rc = gsasl_step64 (session, buf, &p);
if (rc == GSASL_NEEDS_MORE || rc == GSASL_OK)
{
printf ("Output:\n%s\n", p);
free (p);
}
}

while (rc == GSASL_NEEDS_MORE) ;
printf ("\n");

if (rc != GSASL_0K)

{
printf ("Authentication error (%d): %s\n", rc, gsasl_strerror (rc));
return;
b
/* The client is done. Here you would typically check if the server
let the client in. If not, you could try again. */

printf ("If server accepted us, we’re done.\n");

static const char *

client_mechanism (Gsasl * ctx)

{
static char mech[GSASL_MAX_MECHANISM_SIZE + 1] = "";
char mechlist[BUFSIZ] = "";
const char *suggestion;

printf ("Enter list of mechanism that server support, separate by SPC:\n");
fgets (mechlist, sizeof (mechlist) - 1, stdin);

suggestion = gsasl_client_suggest_mechanism (ctx, mechlist);
if (suggestion)

printf ("Library suggest use of ‘Ys’.\n", suggestion);

printf ("Enter mechanism to use:\n");

Chapter 13: Examples

}

fgets (mech, sizeof (mech) - 1, stdin);
mech[strlen (mech) - 1] = ’\0’;

return mech;

static void
client (Gsasl * ctx)

{

Gsasl_session *session;
const char *mech;
int rc;

/* Find out which mechanism to use. */
mech = client_mechanism (ctx);

/* Create new authentication session. */

53

if ((rc = gsasl_client_start (ctx, mech, &session)) != GSASL_0K)

{

printf ("Cannot initialize client (%d):

return;

}

/* Set username and password in session handle.
lost when this session is deallocated below.

%s\n", rc, gsasl_strerror (rc));

This info will be
x/

gsasl_property_set (session, GSASL_AUTHID, "jas");
gsasl_property_set (session, GSASL_PASSWORD, "secret");

/* Do it. */
client_authenticate (session);

/* Cleanup. */
gsasl_finish (session);

int
main (int argc, char xargv[])

{

Gsasl *ctx = NULL;
int rc;

/* Initialize library. x*/
if ((rc = gsasl_init (&ctx)) != GSASL_0K)
{

printf ("Cannot initialize libgsasl (%d):

return 1;

3

%s", rc, gsasl_strerror (rc));

Chapter 13: Examples 54

/* Do it. */
client (ctx);

/* Cleanup. */
gsasl_done (ctx);

return O;

13.4 Example 4

/

*

Copyright (C) 2004, 2005, 2007, 2009 Simon Josefsson

This file is part of GNU SASL.

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <gsasl.h>

static void
client_authenticate (Gsasl_session * session)
{

char buf [BUFSIZ] = "";

char *p;

int rc;

/* This loop mimic a protocol where the server get to send data first.

client-callback.c --- Example SASL client, with callback for user info.

This program is free software: you can redistribute it and/or modify

along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

Chapter 13: Examples 55

do

printf ("Input base64 encoded data from server:\n");
fgets (buf, sizeof (buf) - 1, stdin);
if (buf[strlen (buf) - 1] == ’\n’)

buf [strlen (buf) - 1] = °\0’;

rc = gsasl_step64 (session, buf, &p);

if (rc == GSASL_NEEDS_MORE || rc == GSASL_OK)
{
printf ("Output:\n%s\n", p);
free (p);
}
}
while (rc == GSASL_NEEDS_MORE) ;

printf ("\n");

if (rc != GSASL_0K)

{
printf ("Authentication error (%d): %s\n", rc, gsasl_strerror (rc));
return;
b
/* The client is done. Here you would typically check if the server
let the client in. If not, you could try again. */

printf ("If server accepted us, we’re done.\n");

static void

client (Gsasl * ctx)

{
Gsasl_session *session;
const char *mech = "SECURID";
int rc;

/* Create new authentication session. */

if ((rc = gsasl_client_start (ctx, mech, &session)) != GSASL_OK)
{
printf ("Cannot initialize client (%d): %s\n", rc, gsasl_strerror (rc));
return;
}

/* Do it. x/

Chapter 13: Examples

client_authenticate (session);

/* Cleanup. */
gsasl_finish (session);

}

static int
callback (Gsasl * ctx, Gsasl_session * sctx, Gsasl_property prop)

{
char buf [BUFSIZ] = "";
int rc = GSASL_NO_CALLBACK;

/* Get user info from user. */
printf ("Callback invoked, for property %d.\n", prop);

switch (prop)
{
case GSASL_PASSCODE:
printf ("Enter passcode:\n");
fgets (buf, sizeof (buf) - 1, stdin);
buf [strlen (buf) - 1] = ’\0’;

gsasl_property_set (sctx, GSASL_PASSCODE, buf);
rc = GSASL_OK;
break;

case GSASL_AUTHID:
printf ("Enter username:\n");
fgets (buf, sizeof (buf) - 1, stdin);
buf [strlen (buf) - 1] = ’\0’;

gsasl_property_set (sctx, GSASL_AUTHID, buf);
rc = GSASL_OK;
break;

default:
printf ("Unknown property! Don’t worry.\n");
break;

}

return rc;

}
int

main (int argc, char *argvl[])

{

56

Chapter 13: Examples 57

Gsasl *ctx = NULL;
int rc;

/* Initialize library. */
if ((rc = gsasl_init (&ctx)) != GSASL_OK)
{
printf ("Cannot initialize libgsasl (%d): %s", rc, gsasl_strerror (rc));
return 1;

¥

/* Set the callback handler for the library. x*/
gsasl_callback_set (ctx, callback);

/* Do it. */
client (ctx);

/* Cleanup. */
gsasl_done (ctx);

return O;

Chapter 14: Acknowledgements 58

14 Acknowledgements

The makefiles, manuals, etc borrowed much from Libgcrypt written by Werner Koch.

Cryptographic functions for some SASL mechanisms uses Libgerypt by Werner Koch et
al. The NTLM mechanism uses Libntlm by Grant Edwards et al, using code from Samba
written by Andrew Tridgell, and now maintained by Simon Josefsson. The KERBEROS_V5
mechanism uses Shishi by Simon Josefsson. The GSSAPI mechanism uses a GSS-API
implementation, such as GSSLib by Simon Josefsson.

Gnulib is used to simplify portability.

This manual borrows text from the SASL specification.

Chapter 15: Invoking gsasl 59

15 Invoking gsasl

Name

GNU SASL (gsasl) — Command line interface to libgsasl.

Description
gsasl is the main program of GNU SASL.

This section only lists the commands and options available.

Mandatory or optional arguments to long options are also mandatory or optional for any
corresponding short options.

Commands

gsasl recognizes these commands:

-c, ——client Act as client (the default).
--client-mechanisms Write name of supported client mechanisms
separated by space to stdout.
-s, —-server Act as server.
--server-mechanisms Write name of supported server mechanisms

separated by space to stdout.

Network Options

Normally the SASL negotiation is performed on the terminal, with reading from stdin and
writing to stdout. It is also possible to perform the negotiation with a server over a TCP
network connection.

—--connect=HOSTNAME [: SERVICE]
Connect to TCP server and negotiate on stream
instead of stdin/stdout. SERVICE is the protocol
service, or an integer denoting the port, and
defaults to 143 (imap) if not specified. Also sets
the --hostname default.

Chapter 15: Invoking gsasl

60

Miscellaneous Options:

These parameters affect overall behaviour.

-d,

-m,

--application-data

—--imap

—-mechanism=STRING
--no-client-first

After authentication, read data from stdin and run
it through the mechanism’s security layer and
print it base64 encoded to stdout. The default is
to terminate after authentication.

Use a IMAP-like logon procedure (client only).
Also sets the --service default to "imap".
Mechanism to use.

Disallow client to send data first (client only).

SASL Mechanism Options

These options modify the behaviour of the callbacks (see Chapter 7 [Callback Functions],
page 30) in the library. The default is the query the user on the terminal.

-n, ——anonymous—-token=STRING Token for anonymous authentication, usually

-a,
-z,

-p,

-r,

-X,

mail address (ANONYMOUS only) .

--authentication-id=STRING Identity of credential owner.
—--—authorization-id=STRING Identity to request service for.
--disable-cleartext-validate

Disable cleartext validate hook, forcing server to
prompt for password.

--enable-cram-mdb-validate Validate CRAM-MD5 challenge and response

——hostname=STRING
--password=STRING

--passcode=NUMBER

interactively.
Set the name of the server with the requested
service.
Password for authentication (insecure for
non-testing purposes).
Passcode for authentication (SECURID only).

--quality-of-protection=<qop-auth | qop-int | qop-conf>

—--realm=STRING
--service=STRING

—--service—-name=STRING

—--maxbuf=NUMBER

How application payload will be protected.
"qop-auth" means no protection,

"qop-int" means integrity protection,
"qop-conf" means confidentiality.

Currently only used by DIGEST-MD5, where the
default is "qop-int".

Realm. Defaults to hostname.

Set the requested service name (should be a
registered GSSAPI host based service name).
Set the generic server name in case of a
replicated server (DIGEST-MD5 only).
Indicate maximum buffer size (DIGEST-MD5 only) .

Chapter 15: Invoking gsasl 61

STARTTLS options

-—-starttls Force use of STARTTLS. The default is to use
STARTTLS when available. (default=off)

--no-starttls Unconditionally disable STARTTLS.
(default=off)

--x509-ca-file=FILE File containing one or more X.509 Certificate

Authorities certificates in PEM format, used
to verify the certificate received from the
server. If not specified, no verification of
the remote server certificate will be done.

--x509-cert-file=FILE File containing client X.509 certificate in PEM
format. Used together with --x509-key-file
to specify the certificate/key pair.

--x509-key-file=FILE Private key for the client X.509 certificate in
PEM format. Used together with
--x509-key-file to specify the
certificate/key pair.

--priority Cipher priority string.

Other Options

These are some standard parameters.

-q, —-quiet, --silent Don’t produce any diagnostic output.
-v, —-verbose Produce verbose output.
-7, ——help Give this help list

--usage Give a short usage message

-V, —--version Print program version

Appendix A: Protocol Clarifications 62

Appendix A Protocol Clarifications

This appendix contain clarification to various SASL specification that we felt were necessary
to include, if for nothing else it may serve as a guide for other implementors that worry
about the same issues.

A.1 Use of SASLprep in CRAM-MD5

The specification, as of ‘draft-ietf-sasl-crammd5-04.txt’, is silent on whether a SASL
server implementation applying SASLprep on a password received from an external, non-
SASL specific database (i.e., the passwords are not stored in SASLprep form in the data-
base), should set or clear the AllowUnassigned bit. The motivation for the AU-bit in
StringPrep/SASLprep is for stored vs query strings. It could be argued that in this situation
the server can treat the external password either as a stored string (from a database) or as
a query (the server uses the string as a query into the fixed HMAC-MD5 hash).

The specification is also unclear on whether clients should set or clear the AllowUnas-
signed flag.

In the server, GNU SASL apply SASLprep to the password with the AllowUnassigned
bit cleared.

A.2 Use of SASLprep in LOGIN

The non-standard mechanism LOGIN presumably does not support non-ASCII. We suggest
that the client should send unprepared UTF-8 and that the server apply SASLprep with
the AllowUnassigned bit cleared on the received username and password.

Appendix B: Old Functions 63

Appendix B Old Functions

As GNU SASL is still under heavy development, some API functions have been found to
be less useful. Those old API functions will be supported during a transition period. Refer
to the NEWS file to find out since when a function has been deprecated.

gsasl_client_listmech

int gsasl_client_listmech (Gsasl * ctx, char * out, size_t * [Function]
outlen)
ctx: libgsasl handle.

out: output character array.

outlen: input maximum size of output character array, on output contains actual
length of output array.

Write SASL names, separated by space, of mechanisms supported by the libgsasl
client to the output array. To find out how large the output array must be, call this
function with a NULL out parameter.

Return value: Returns GSASL_OK if successful, or error code.

Deprecated: Use gsasl_client_mechlist() instead.
gsasl_server_listmech

int gsasl_server_listmech (Gsasl * ctx, char * out, size_t * [Function]
outlen)
ctx: libgsasl handle.

out: output character array.

outlen: input maximum size of output character array, on output contains actual
length of output array.

Write SASL names, separated by space, of mechanisms supported by the libgsasl
server to the output array. To find out how large the output array must be, call this
function with a NULL out parameter.

Return value: Returns GSASL_OK if successful, or error code.

Deprecated: Use gsasl_server_mechlist() instead.
gsasl_client_step

int gsasl_client_step (Gsaslsession * sctx, const char * input, [Function]
size_t input_len, char * output, size_t * output_len)
sctx: libgsasl client handle.

input: input byte array.
input_len: size of input byte array.
output: output byte array.

output_len: size of output byte array.

Appendix B: Old Functions 64

Perform one step of SASL authentication in client. This reads data from server
(specified with input and input_len), processes it (potentially invoking callbacks to
the application), and writes data to server (into variables output and output_len).

The contents of the output buffer is unspecified if this functions returns anything
other than GSASL_NEEDS_MORE.

Return value: Returns GSASL_OK if authenticated terminated successfully, GSASL_
NEEDS_MORE if more data is needed, or error code.

Deprecated: Use gsasl_step() instead.
gsasl_server_step

int gsasl_server_step (Gsasl_session * sctx, const char * input, [Function]
size_t input_len, char * output, size_t * output_len)
sctx: libgsasl server handle.

input: input byte array.

input_len: size of input byte array.
output: output byte array.
output_len: size of output byte array.

Perform one step of SASL authentication in server. This reads data from client
(specified with input and input_len), processes it (potentially invoking callbacks to
the application), and writes data to client (into variables output and output_len).

The contents of the output buffer is unspecified if this functions returns anything
other than GSASL_NEEDS_MORE.

Return value: Returns GSASL_OK if authenticated terminated successfully, GSASL_
NEEDS_MORE if more data is needed, or error code.

Deprecated: Use gsasl_step() instead.
gsasl_client_step_base64

int gsasl_client_step_base64 (Gsasl_session * sctx, const char * [Function]
b64input, char * b64output, size_.t b64output_len)
sctx: libgsasl client handle.

b64input: input base64 encoded byte array.
b64output: output base64 encoded byte array.
b64output_len: size of output base64 encoded byte array.

This is a simple wrapper around gsasl_client_step() that base64 decodes the input
and base64 encodes the output.

Return value: See gsasl_client_step().

Deprecated: Use gsasl_step64() instead.

Appendix B: Old Functions 65

gsasl_server_step_base64

int gsasl_server_step_base64 (Gsasl session * sctx, const char * [Function]
b64input, char * b64output, size_t b64output_len)
sctx: libgsasl server handle.

b64input: input base64 encoded byte array.
b64output: output base64 encoded byte array.
b64output_len: size of output base64 encoded byte array.

This is a simple wrapper around gsasl_server_step() that base64 decodes the input
and base64 encodes the output.

Return value: See gsasl_server_step().

Deprecated: Use gsasl_step64() instead.
gsasl_client _finish

void gsasl_client_finish (Gsasl_session * sctx) [Function]
sctx: libgsasl client handle.

Destroy a libgsasl client handle. The handle must not be used with other libgsasl
functions after this call.

Deprecated: Use gsasl_finish() instead.
gsasl_server_finish

void gsasl_server_finish (Gsasl session * sctx) [Function]
sctx: libgsasl server handle.

Destroy a libgsasl server handle. The handle must not be used with other libgsasl
functions after this call.

Deprecated: Use gsasl_finish() instead.
gsasl_client_ctx_get

Gsasl * gsasl_client_ctx_get (Gsaslsession * sctx) [Function]
sctx: libgsasl client handle
Return value: Returns the libgsasl handle given a libgsasl client handle.

Deprecated: This function is not useful with the new 0.2.0 API.
gsasl_client_application_data_set

void gsasl_client_application_data_set (Gsasl_session * sctx, [Function]
void * application_data)

sctx: libgsasl client handle.
application_data: opaque pointer to application specific data.
Store application specific data in the libgsasl client handle. The application data
can be later (for instance, inside a callback) be retrieved by calling gsasl_client_
application_data_get (). It is normally used by the application to maintain state
between the main program and the callback.

Appendix B: Old Functions 66

Deprecated: Use gsasl_callback_hook_set() or gsasl_session_hook_set() in-
stead.

gsasl_client_application_data_get

void * gsasl_client_application_data_get (Gsasl_session * [Function]
sctx)
sctx: libgsasl client handle.

Retrieve application specific data from libgsasl client handle. The application data
is set using gsasl_client_application_data_set(). It is normally used by the
application to maintain state between the main program and the callback.

Return value: Returns the application specific data, or NULL.

Deprecated: Use gsasl_callback_hook_get() or gsasl_session_hook_get() in-
stead.

gsasl_server_ctx_get

Gsasl * gsasl_server_ctx_get (Gsaslsession * sctx) [Function]
sctx: libgsasl server handle

Return value: Returns the libgsasl handle given a libgsasl server handle.
Deprecated: This function is not useful with the new 0.2.0 APL.

gsasl_server_application_data_set

void gsasl_server_application_data_set (Gsasl-session * sctx, [Function]
void * application_data)
sctx: libgsasl server handle.
application_data: opaque pointer to application specific data.

Store application specific data in the libgsasl server handle. The application data
can be later (for instance, inside a callback) be retrieved by calling gsasl_server_
application_data_get (). It is normally used by the application to maintain state
between the main program and the callback.

Deprecated: Use gsasl_callback_hook_set() or gsasl_session_hook_set() in-
stead.

gsasl_server_application_data_get

void * gsasl_server_application_data_get (Gsaslsession * [Function]
sctx)
sctx: libgsasl server handle.

Retrieve application specific data from libgsasl server handle. The application data
is set using gsasl_server_application_data_set(). It is normally used by the
application to maintain state between the main program and the callback.

Return value: Returns the application specific data, or NULL.

Deprecated: Use gsasl_callback_hook_get() or gsasl_session_hook_get() in-
stead.

Appendix B: Old Functions 67

gsasl_randomize

int gsasl_randomize (int strong, char * data, size_t datalen) [Function]
strong: 0 iff operation should not block, non-0 for very strong randomness.

data: output array to be filled with random data.

datalen: size of output array.

Store cryptographically random data of given size in the provided buffer.
Return value: Returns GSASL_OK iff successful.

Deprecated: Use gsasl_random() or gsasl_nonce() instead.
gsasl_ctx_get

Gsasl * gsasl_ctx_get (Gsaslsession * sctx) [Function]
sctx: libgsasl session handle

Return value: Returns the libgsasl handle given a libgsasl session handle.
Deprecated: This function is not useful with the new 0.2.0 API.

gsasl_encode_inline

int gsasl_encode_inline (Gsasl_session * sctx, const char * input, [Function]
size_t input_len, char * output, size_t * output_len)
sctx: libgsasl session handle.

input: input byte array.

input_len: size of input byte array.
output: output byte array.
output_len: size of output byte array.

Encode data according to negotiated SASL mechanism. This might mean that data
is integrity or privacy protected.

Return value: Returns GSASL_OK if encoding was successful, otherwise an error code.
Deprecated: Use gsasl_encode() instead.
Since: 0.2.0

gsasl_decode_inline

int gsasl_decode_inline (Gsasl_session * sctx, const char * input, [Function]
size_t input_len, char * output, size_t * output_len)
sctx: libgsasl session handle.

input: input byte array.

input_len: size of input byte array.
output: output byte array.
output_len: size of output byte array.

Decode data according to negotiated SASL mechanism. This might mean that data
is integrity or privacy protected.

Return value: Returns GSASL_OK if encoding was successful, otherwise an error code.

Appendix B: Old Functions 68

Deprecated: Use gsasl_decode () instead.
Since: 0.2.0

gsasl_application_data_set

void gsasl_application_data_set (Gsasl * ctx, void * appdata) [Function]
ctx: libgsasl handle.

appdata: opaque pointer to application specific data.

Store application specific data in the libgsasl handle. The application data can be
later (for instance, inside a callback) be retrieved by calling gsasl_application_
data_get (). It is normally used by the application to maintain state between the
main program and the callback.

Deprecated: Use gsasl_callback_hook_set() instead.
gsasl_application_data_get

void * gsasl_application_data_get (Gsasl * ctx) [Function]
ctx: libgsasl handle.

Retrieve application specific data from libgsasl handle. The application data is set
using gsasl_application_data_set(). It is normally used by the application to
maintain state between the main program and the callback.

Return value: Returns the application specific data, or NULL.

Deprecated: Use gsasl_callback_hook_get () instead.
gsasl_appinfo_set

void gsasl_appinfo_set (Gsasl_session * sctx, void * appdata) [Function]
sctx: libgsasl session handle.

appdata: opaque pointer to application specific data.

Store application specific data in the libgsasl session handle. The application data
can be later (for instance, inside a callback) be retrieved by calling gsasl_appinfo_
get (). It is normally used by the application to maintain state between the main
program and the callback.

Deprecated: Use gsasl_callback_hook_set() instead.
gsasl_appinfo_get

void * gsasl_appinfo_get (Gsasl_session * sctx) [Function]
sctx: libgsasl session handle.

Retrieve application specific data from libgsasl session handle. The application data
is set using gsasl_appinfo_set (). It is normally used by the application to maintain
state between the main program and the callback.

Return value: Returns the application specific data, or NULL.

Deprecated: Use gsasl_callback_hook_get () instead.

Appendix B: Old Functions 69

gsasl_server_suggest_mechanism

const char * gsasl_server_suggest_mechanism (Gsasl * ctx, [Function]
const char * mechlist)
ctx: libgsasl handle.

mechlist: input character array with SASL mechanism names, separated by invalid
characters (e.g. SPC).

Return value: Returns name of "best" SASL mechanism supported by the libgsasl
server which is present in the input string.

Deprecated: This function was never useful, since it is the client that chose which
mechanism to use.

gsasl_client_callback_authentication_id_set

void gsasl_client_callback_authentication_id_set (Gsasl * [Function]
ctx, Gsasl_client_callback_authentication_id cb)
ctx: libgsasl handle.

ch: callback function

Specify the callback function to use in the client to set the authentication identity. The
function can be later retrieved using gsasl_client_callback_authentication_id_
get ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_authentication_id_get

Gsasl_client_callback_authentication_id [Function]
gsasl_client_callback_authentication_id_get (Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
authentication_id_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_authorization_id_set

void gsasl_client_callback_authorization_id_set (Gsasl * ctx, [Function]
Gsasl_client_callback_authorization_id cb)
ctx: libgsasl handle.

ch: callback function

Specify the callback function to use in the client to set the authorization identity.
The function can be later retrieved using gsasl_client_callback_authorization_
id_get ().

Appendix B: Old Functions 70

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_authorization_id_get

Gsasl_client_callback_authorization_id [Function]
gsasl_client_callback_authorization_id_get (Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
authorization_id_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_password_set

void gsasl_client_callback_password_set (Gsasl * ctx, [Function]
Gsasl_client_callback_password cb)
ctx: libgsasl handle.

ch: callback function

Specify the callback function to use in the client to set the password. The function
can be later retrieved using gsasl_client_callback_password_get().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_password_get

Gsasl_client_callback_password [Function]
gsasl_client_callback_password_get (Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
password_set ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_passcode_set

void gsasl_client_callback_passcode_set (Gsasl * ctx, [Function]
Gsasl_client_callback_passcode cb)
ctx: libgsasl handle.

ch: callback function

Specify the callback function to use in the client to set the passcode. The function
can be later retrieved using gsasl_client_callback_passcode_get().

Appendix B: Old Functions 71

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_passcode_get

Gsasl_client_callback_passcode [Function]
gsasl_client_callback_passcode_get (Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
passcode_set ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_pin_set

void gsasl_client_callback_pin_set (Gsasl * ctx, [Function]
Gsasl_client_callback_pin cb)
ctx: libgsasl handle.

ch: callback function

Specify the callback function to use in the client to chose a new pin, possibly suggested
by the server, for the SECURID mechanism. This is not normally invoked, but only
when the server requests it. The function can be later retrieved using gsasl_client_
callback_pin_get ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_pin_get

Gsasl_client_callback_pin gsasl_client_callback_pin_get [Function]
(Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
pin_set ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_service_set

void gsasl_client_callback_service_set (Gsasl * ctx, [Function]
Gsasl_client_callback_service cb)
ctx: libgsasl handle.

ch: callback function

Appendix B: Old Functions 72

Specify the callback function to use in the client to set the name of the service. The
service buffer should be a registered GSSAPI host-based service name, hostname the
name of the server. Servicename is used by DIGEST-MD5 and should be the name
of generic server in case of a replicated service. The function can be later retrieved
using gsasl_client_callback_service_get ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_service_get

Gsasl_client_callback_service [Function]
gsasl_client_callback_service_get (Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
service_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_anonymous_set

void gsasl_client_callback_anonymous_set (Gsasl * ctx, [Function]
Gsasl_client_callback_anonymous cb)
ctx: libgsasl handle.

ch: callback function

Specify the callback function to use in the client to set the anonymous token, which
usually is the users email address. The function can be later retrieved using gsasl_
client_callback_anonymous_get ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_anonymous_get

Gsasl_client_callback_anonymous [Function]
gsasl_client_callback_anonymous_get (Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
anonymous_set ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

Appendix B: Old Functions 73

gsasl_client_callback_qop_set

void gsasl_client_callback_qop_set (Gsasl * ctx, [Function]
Gsasl_client_callback_qop cb)
ctx: libgsasl handle.

ch: callback function

Specify the callback function to use in the client to determine the qop to use after
looking at what the server offered. The function can be later retrieved using gsasl_
client_callback_qop_get().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_qop_get

Gsasl_client_callback_qop gsasl_client_callback_qop_get [Function]
(Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_client_callback_
qop_set ().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_maxbuf_set

void gsasl_client_callback_maxbuf_set (Gsasl * ctx, [Function]
Gsasl_client_callback_maxbuf cb)
ctx: libgsasl handle.

ch: callback function

Specify the callback function to use in the client to inform the server of the largest
buffer the client is able to receive when using the DIGEST-MD5 "auth-int" or "auth-
conf" Quality of Protection (qop). If this directive is missing, the default value 65536
will be assumed. The function can be later retrieved using gsasl_client_callback_
maxbuf_get ().

Deprecated: This function is part of the old callback interface. The new interface uses

gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_maxbuf_get

Gsasl_client_callback_maxbuf [Function]
gsasl_client_callback_maxbuf_get (Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
maxbuf_set ().

Appendix B: Old Functions 74

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_realm_set

void gsasl_client_callback_realm_set (Gsasl * ctx, [Function]
Gsasl_client_callback_realm cb)
ctx: libgsasl handle.

cb: callback function
Specify the callback function to use in the client to know which realm it belongs to.

The realm is used by the server to determine which username and password to use.
The function can be later retrieved using gsasl_client_callback_realm_get ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_client_callback_realm_get

Gsasl_client_callback_realm [Function]
gsasl_client_callback_realm_get (Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_client_callback_
realm_set ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_validate_set

void gsasl_server_callback_validate_set (Gsasl * ctx, [Function]
Gsasl_server_callback_validate cb)
ctx: libgsasl handle.

chb: callback function
Specify the callback function to use in the server for deciding if user is authenticated

using authentication identity, authorization identity and password. The function can
be later retrieved using gsasl_server_callback_validate_get().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_validate_get

Gsasl_server_callback_validate [Function]
gsasl_server_callback_validate_get (Gsasl * ctx)
ctx: libgsasl handle.

Appendix B: Old Functions 75

Return value: Returns the callback earlier set by calling gsasl_server_callback_
validate_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_retrieve_set

void gsasl_server_callback_retrieve_set (Gsasl * ctx, [Function]
Gsasl_server_callback_retrieve cb)
ctx: libgsasl handle.

ch: callback function

Specify the callback function to use in the server for deciding if user is authenticated
using authentication identity, authorization identity and password. The function can
be later retrieved using gsasl_server_callback_retrieve_get().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_retrieve_get

Gsasl_server_callback_retrieve [Function]
gsasl_server_callback_retrieve_get (Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
retrieve_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_cram_md5_set

void gsasl_server_callback_cram_md5_set (Gsasl * ctx, [Function]
Gsasl_server_callback_cram_md5 cb)
ctx: libgsasl handle.

ch: callback function

Specify the callback function to use in the server for deciding if user is authenticated
using CRAM-MD5 challenge and response. The function can be later retrieved using
gsasl_server_callback_cram_md5_get ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

Appendix B: Old Functions 76

gsasl_server_callback_cram_md5_get

Gsasl_server_callback_cram_md5 [Function]
gsasl_server_callback_cram_md5_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
cram_md5_set ().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_digest_md5_set

void gsasl_server_callback_digest_md5_set (Gsasl * ctx, [Function]
Gsasl_server_callback_digest_md5 cb)
ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server for retrieving the secret hash of
the username, realm and password for use in the DIGEST-MD5 mechanism. The
function can be later retrieved using gsasl_server_callback_digest_md5_get ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_digest_md5_get

Gsasl_server_callback_digest_mdb [Function]
gsasl_server_callback_digest_md5_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Return the callback earlier set by calling gsasl_server_callback_
digest_md5_set ().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_external_set

void gsasl_server_callback_external_set (Gsasl * ctx, [Function]
Gsasl_server_callback_external cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server for deciding if user is authenticated
out of band. The function can be later retrieved using gsasl_server_callback_
external_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

Appendix B: Old Functions 7

gsasl_server_callback_external_get

Gsasl_server_callback_external [Function]
gsasl_server_callback_external_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
external_set ().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_anonymous_set

void gsasl_server_callback_anonymous_set (Gsasl * ctx, [Function]
Gsasl_server_callback_anonymous cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server for deciding if user is permit-
ted anonymous access. The function can be later retrieved using gsasl_server_
callback_anonymous_get ().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_anonymous_get

Gsasl_server_callback_anonymous [Function]
gsasl_server_callback_anonymous_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
anonymous_set ().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_realm_set

void gsasl_server_callback_realm_set (Gsasl * ctx, [Function]
Gsasl_server_callback_realm cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server to know which realm it serves. The
realm is used by the user to determine which username and password to use. The
function can be later retrieved using gsasl_server_callback_realm_get ().
Deprecated: This function is part of the old callback interface. The new interface uses

gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

Appendix B: Old Functions 78

gsasl_server_callback_realm_get

Gsasl_server_callback_realm [Function]
gsasl_server_callback_realm_get (Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
realm_set().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_qop_set

void gsasl_server_callback_qop_set (Gsasl * ctx, [Function]
Gsasl_server_callback_qop cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server to know which quality of protection
it accepts. The quality of protection eventually used is selected by the client though.
It is currently used by the DIGEST-MD5 mechanism. The function can be later
retrieved using gsasl_server_callback_qop_get().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_qop_get

Gsasl_server_callback_qop gsasl_server_callback_qop_get [Function]
(Gsasl * ctx)

ctx: libgsasl handle.
Return value: Returns the callback earlier set by calling gsasl_server_callback_
qop_set ().
Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_maxbuf_set

void gsasl_server_callback_maxbuf_set (Gsasl * ctx, [Function]
Gsasl_server_callback_maxbuf cb)

ctx: libgsasl handle.
cb: callback function
Specify the callback function to use in the server to inform the client of the largest
buffer the server is able to receive when using the DIGEST-MD5 "auth-int" or "auth-
conf" Quality of Protection (qop). If this directive is missing, the default value 65536
will be assumed. The function can be later retrieved using gsasl_server_callback_
maxbuf_get ().

Appendix B: Old Functions 79

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_maxbuf_get

Gsasl_server_callback_maxbuf [Function]
gsasl_server_callback_maxbuf_get (Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
maxbuf_set ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_cipher_set

void gsasl_server_callback_cipher_set (Gsasl * ctx, [Function]
Gsasl_server_callback_cipher cb)
ctx: libgsasl handle.

cb: callback function
Specify the callback function to use in the server to inform the client of the cipher
suites supported. The DES and 3DES ciphers must be supported for interoperability.

It is currently used by the DIGEST-MD5 mechanism. The function can be later
retrieved using gsasl_server_callback_cipher_get ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_cipher_get

Gsasl_server_callback_cipher [Function]
gsasl_server_callback_cipher_get (Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
cipher_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_securid_set

void gsasl_server_callback_securid_set (Gsasl * ctx, [Function]
Gsasl_server_callback_securid cb)
ctx: libgsasl handle.

ch: callback function

Appendix B: Old Functions 80

Specify the callback function to use in the server for validating a user via the
SECURID mechanism. The function should return GSASL_OK if user authenticated
successfully, GSASL_SECURID_SERVER_NEED_ADDITIONAL_PASSCODE if
it wants another passcode, GSASL_SECURID_SERVER_NEED_NEW_PIN
if it wants a PIN change, or an error. When (and only when)
GSASL_SECURID_SERVER_NEED_NEW_PIN is returned, suggestpin can
be populated with a PIN code the server suggests, and suggestpinlen set to the
length of the PIN. The function can be later retrieved using gsasl_server_
callback_securid_get ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_securid_get

Gsasl_server_callback_securid [Function]
gsasl_server_callback_securid_get (Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
securid_set ().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_gssapi_set

void gsasl_server_callback_gssapi_set (Gsasl * ctx, [Function]
Gsasl_server_callback_gssapi cb)
ctx: libgsasl handle.

ch: callback function

Specify the callback function to use in the server for checking if a GSSAPI user
is authorized for username (by, e.g., calling krb5_userok()). The function should
return GSASL_OK if the user should be permitted access, or an error code such
as GSASL_AUTHENTICATION_ERROR on failure. The function can be later re-

trieved using gsasl_server_callback_gssapi_get().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_gssapi_get

Gsasl_server_callback_gssapi [Function]
gsasl_server_callback_gssapi_get (Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
gssapi_set().

Appendix B: Old Functions 81

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_service_set

void gsasl_server_callback_service_set (Gsasl * ctx, [Function]
Gsasl_server_callback_service cb)
ctx: libgsasl handle.

ch: callback function

Specify the callback function to use in the server to set the name of the service.
The service buffer should be a registered GSSAPI host-based service name, hostname
the name of the server. The function can be later retrieved using gsasl_server_
callback_service_get().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set() to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_server_callback_service_get

Gsasl_server_callback_service [Function]
gsasl_server_callback_service_get (Gsasl * ctx)
ctx: libgsasl handle.

Return value: Returns the callback earlier set by calling gsasl_server_callback_
service_set().

Deprecated: This function is part of the old callback interface. The new interface uses
gsasl_callback_set () to set the application callback, and uses gsasl_callback()
or gsasl_property_get () to invoke the callback for certain properties.

gsasl_stringprep_nfkc

char * gsasl_stringprep_nfkc (const char * in, ssize_t len) [Function]
in: a UTF-8 encoded string.

len: length of str, in bytes, or -1 if str is nul-terminated.

Converts a string into canonical form, standardizing such issues as whether a character
with an accent is represented as a base character and combining accent or as a single
precomposed character.

The normalization mode is NFKC (ALL COMPOSE). It standardizes differences that
do not affect the text content, such as the above-mentioned accent representation.
It standardizes the "compatibility" characters in Unicode, such as SUPERSCRIPT
THREE to the standard forms (in this case DIGIT THREE). Formatting information
may be lost but for most text operations such characters should be considered the
same. It returns a result with composed forms rather than a maximally decomposed
form.

Return value: Return a newly allocated string, that is the NFKC normalized form of
str, o NULL on error.

Appendix B: Old Functions 82

Deprecated: No replacement functionality in GNU SASL, use GNU Libidn instead.
Note that in SASL, you most likely want to use SASLprep and not bare NFKC, see
gsasl_saslprep().

gsasl_stringprep_saslprep

char * gsasl_stringprep_saslprep (const char * in, int * [Function]
stringprep_rc)
in: input ASCII or UTF-8 string with data to prepare according to SASLprep.
stringprep_rc: pointer to output variable with stringprep error code, or NULL to indi-
cate that you don’t care about it.

Process a Unicode string for comparison, according to the "SASLprep" stringprep
profile. This function is intended to be used by Simple Authentication and Security
Layer (SASL) mechanisms (such as PLAIN, CRAM-MD5, and DIGEST-MD5) as well
as other protocols exchanging user names and/or passwords.

Return value: Return a newly allocated string that is the "SASLprep" processed
form of the input string, or NULL on error, in which case stringprep_rc contain the
stringprep library error code.

Deprecated: Use gsasl_saslprep() instead.
gsasl_stringprep_trace

char * gsasl_stringprep_trace (const char * in, int * [Function]
stringprep_rc)
in: input ASCII or UTF-8 string with data to prepare according to "trace".
stringprep_rc: pointer to output variable with stringprep error code, or NULL to indi-
cate that you don’t care about it.

Process a Unicode string for use as trace information, according to the "trace" string-
prep profile. The profile is designed for use with the SASL,. ANONYMOUS Mecha-

nism.

Return value: Return a newly allocated string that is the "trace" processed form of
the input string, or NULL on error, in which case stringprep_rc contain the stringprep
library error code.

Deprecated: No replacement functionality in GNU SASL, use GNU Libidn instead.
gsasl_md5pwd_get_password

int gsasl_mdbpwd_get_password (const char * filename, const char [Function]
* username, char * key, size_t * keylen)
filename: filename of file containing passwords.

username: username string.
key: output character array.

keylen: input maximum size of output character array, on output contains actual
length of output array.

Retrieve password for user from specified file. To find out how large the output array
must be, call this function with out=NULL.

Appendix B: Old Functions 83

The file should be on the UoW "MD5 Based Authentication" format, which means
it is in text format with comments denoted by # first on the line, with user entries
looking as "usernameTABpassword". This function removes CR and LF at the end
of lines before processing. TAB, CR, and LF denote ASCII values 9, 13, and 10,
respectively.

Return value: Return GSASL_OK if output buffer contains the password,
GSASL_AUTHENTICATION_ERROR if the user could not be found, or other error
code.

Deprecated: Use gsasl_simple_getpass() instead.
gsasl_base64_encode

int gsasl_base64_encode (char const * src, size_t srclength, char * [Function]
target, size-t targsize)
src: input byte array

srclength: size of input byte array
target: output byte array
targsize: size of output byte array

Encode data as base64. Converts characters, three at a time, starting at src into four
base64 characters in the target area until the entire input buffer is encoded.

Return value: Returns the number of data bytes stored at the target, or -1 on error.

Deprecated: Use gsasl_base64_to() instead.
gsasl_base64_decode

int gsasl_base64_decode (char const * src, char * target, size_t [Function]
targsize)
src: input byte array
target: output byte array
targsize: size of output byte array

Decode Base64 data. Skips all whitespace anywhere. Converts characters, four at
a time, starting at (or after) src from Base64 numbers into three 8 bit bytes in the
target area.

Return value: Returns the number of data bytes stored at the target, or -1 on error.

Deprecated: Use gsasl_base64_from() instead.

B.1 Obsolete callback function prototypes

int (*Gsasl_client_callback_anonymous) (Gsasl session_ctx * [Prototype]
ctx, char * out, size_t * outlen)
ctx: libgsasl handle.

out: output array with client token.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Appendix B: Old Functions 84

Type of callback function the application implements. It should populate the output
array with some input from the user and set the output array length, and return
GSASL_OK, or fail with an error code.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL_OK. This usage may be used by the caller to allocate the
proper buffer size.

int (*Gsasl_server_callback_anonymous) (Gsasl session_ctx * [Prototype]
ctx, const char * token)
ctx: libgsasl handle.

ctx: output array with client token.

ctx: on input the maximum size of the output array, on output contains the actual
size of the output array. If OUT is

Type of callback function the application implements. It should return GSASL_OK
if user should be permitted anonymous access, otherwise GSASL_AUTHENTICATION_
ERROR.

int (*Gsasl_client_callback_authentication_id) [Prototype]
(Gsasl_session_ctx * ctx, char * out, size_t * outlen)
ctx: libgsasl handle.

out: output array with authentication identity.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Type of callback function the application implements. It should populate the output
array with authentiction identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authentication identity must be encoded
in UTF-8, but need not be normalized in any way.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL_OK. This usage may be used by the caller to allocate the
proper buffer size.

int (*Gsasl_client_callback_authorization_id) [Prototype]
(Gsasl_session_ctx * ctx, char * out, size_t * outlen)
ctx: libgsasl handle.

out: output array with authorization identity.

outlen: on input the maximum size of the output array, on output contains the actual
size of the output array.

Type of callback function the application implements. It should populate the output
array with authorization identity of user and set the output array length, and return
GSASL_OK, or fail with an error code. The authorization identity must be encoded in
UTF-8, but need not be normalized in any way.

If OUT is NULL, the function should only populate the output length field with the
length, and return GSASL_OK. This usage may be used by the caller to allocate the
proper buffer size.

Appendix B: Old Functions 85

int (*Gsasl_client_callback_service) (Gsaslsession_ctx * ctx, [Prototype]
char * service, size_t * servicelen, char * hostname, size_t *
hostnamelen, char * servicename, size_t * servicenamelen)
ctx: libgsasl handle.

service: output array with name of service.

servicelen: on input the maximum size of the service output array, on output contains
the actual size of the service output array.

hostname: output array with hostname of server.

hostnamelen: on input the maximum size of the hostname output array, on output
contains the actual size of the hostname output array.

servicename: output array with generic name of server in case of replication
(DIGEST-MD?5 only).

servicenamelen: on input the maximum size of the servicename output array, on
output contains the actual size of the servicename output array.

Type of callback function the application implements. It should retrieve the service
(which should be a registered GSSAPI host based service name, such as “imap”)
on the server, hostname of server (usually canoncial DNS hostname) and optionally
generic service name of server in case of replication (e.g. “mail.example.org” when the
hostname is “mx42.example.org”, see the RFC 2831 for more information). It should
return GSASL_OK, or an error such as GSASL_AUTHENTICATION_ERROR if it
fails.

If SERVICE, HOSTNAME or SERVICENAME is NULL, the function should only
populate SERVICELEN, HOSTNAMELEN or SERVICENAMELEN with the output
length of the respective field, and return GSASL_OK. This usage may be used by the
caller to allocate the proper buffer size. Furthermore, SERVICENAMELEN may also
be NULL, indicating that the mechanism is not interested in this field.

int (*Gsasl_server_callback_cram_md5) (Gsaslsession_ctx * ctx, [Prototype]
char * username, char * challenge, char * response)
ctx: libgsasl handle.

username: input array with username.
challenge: input array with CRAM-MD5 challenge.
response: input array with CRAM-MDD5 response.

Type of callback function the application implements. It should return
GSASL_OK if and only if the validation of the provided credential was succesful.

GSASL_AUTHENTICATION_ERROR is a good failure if authentication failed, but
any available return code may be used.

int (*Gsasl_server_callback_digest_md5) (Gsasl_session_ctx * [Prototype]
ctx, char * username, char * realm, char * secrethash)
ctx: libgsasl handle.

username: input array with authentication identity of user.
realm: input array with realm of user.

secrethash: output array that should contain hash of username, realm and password
as described for the DIGEST-MD5 mechanism.

Appendix B: Old Functions 86

Type of callback function the application implements. It should retrieve the secret
hash for the given user in given realm and return GSASL_OK, or an error such as
GSASL_AUTHENTICATION_ERROR if it fails. The secrethash buffer is guaranteed
to have size for the fixed length MD5 hash.

int (*Gsasl_server_callback_external) (Gsasl_session_ctx * [Prototype]
ctx)
ctx: libgsasl handle.
Type of callback function the application implements. It should return GSASL_OK
if user is authenticat